我国白色污染防治对策

  仪器信息网 ·  2007-06-20 21:40  ·  36451 次点击
摘要:白色污染给景观和环境造成了严重危害,引发的一系列环境问题。本文借鉴发达国家的白色污染防治手段,分析并展望了可降解塑料的性能、应用及前景,提出了相应的防治措施。
关键词:白色污染;回收利用;可降解塑料
塑料制品的广泛使用,给人们带来了很大的方便,但由于人们对废旧塑料造成的环境污染缺乏足够的认识,将用过的大量塑料制品废弃物随意丢弃,给景观和环境造成了严重危害。常见的塑料制品废弃物有:聚乙烯(PE)包装袋、保鲜膜、护套和台布等;聚苯乙烯(PS)可发性快餐盒和餐具容器、精密仪器、家用电器的发泡包装套等;聚丙烯(PP)包装膜及快餐盒;聚氯乙烯(PVC)透明片、热收缩薄膜及乳胶手套等。由于塑料包装物大多呈白色,人们形象地比喻为“白色污染”。
一、白色污染的防治
我国目前防治白色污染遵循“以宣传教育为先导,以强化管理为核心,以回收利用为主要手段,以替代产品为补充措施”的原则。
1、停止使用一次性发泡塑料餐具及超薄塑料袋。“一次性方便,二百年污染”是塑料垃圾的形象写照。国务院办公厅的通知,根据《商品零售场所塑料购物袋有偿使用管理办法》,从2008年6月1日起,在全国范围内禁止生产、销售、使用厚度小于0.025mm的塑料购物袋,超薄塑料购物袋被列入淘汰类产品目录,并在所有超市、商场、集贸市场等商品零售场所实行塑料购物袋有偿使用制度。我国实施塑料袋收费后,全国塑料袋的使用量有望减少2/3,一次性塑料袋的回收率也将大幅上升。
2、回收利用是当前防治白色污染的主要手段。随着塑料工业的迅猛发展,废旧塑料的回收利用作为一项节约能源、保护环境的措施,越来越受到重视。尤其是发达国家,这方面的工作起步早,已经收到了明显的效益,我们可以借鉴其经验。
美国是世界塑料生产大国。据统计,到2000年,美国年生产塑料3,400余万吨,废旧塑料超过1,600万吨。早在20世纪六十年代美国就已展开废旧塑料回收利用的广泛研究。20世纪末废旧塑料回收率达35%以上。其中,燃烧废旧塑料回收能源由八十年代的3%增至18%;废旧制品的掩埋率从96%下降到37%。美国在燃烧废旧塑料利用热能、热分解提取化工原料等方面进行了大量工作并取得了一些成果。另外,美国各州为解决塑料废弃物问题,制定了相应的法律、法规。
日本也是塑料生产大国。20世纪八十年代,其年均废旧塑料排放量占生产量的46%。废旧塑料的处理已成为日本的严重社会问题,而且日本是能源短缺国家,所以对废旧塑料的回收利用一直保持积极态度。九十年代初,日本回收利用废旧塑料率为7%,燃烧利用热能率为35%。日本在混合废旧塑料的开发应用方面也处于世界领先地位。
意大利是目前欧洲回收利用废旧塑料工作做得最好的国家。意大利的废旧塑料约占城市固体废弃物的4%,其回收率可达28%。意大利还研制出从城市固体垃圾中分离废旧塑料的机械装置。意大利对废旧塑料回收一般是将塑料碎片和纸片一起收集,分离后的废旧聚乙烯制品经粉碎处理,用磁筛除去铁等金属杂质,经清洗、脱水、干燥后,通过螺杆挤出机进行造粒。这种回收料再加入新料,可保证其具有足够的力学性能,可生产垃圾袋、异型材、中空制品等。
3、塑料制品回收利用的方法
(1)直接再生利用。根据原料不同,有3种直接再生利用的方法:①不需分捡、清洗等预处理,直接破碎后塑化成型。②必须经过清洗、干燥、破碎后造粒或直接塑化成型。③再生前须特别预处理。直接再生制品性能欠佳,一般只做档次较低的塑料制品。
(2)改性再生利用。是将再生料通过机械共混或化学处理进行改进的技术。如增韧、增强、复合、活化、高联等,使再生制品的力学性能得到改善和提高,可以作为档次较高的产品。改性再生利用的工艺路线较复杂,有的需要特定的机械设备。湖南大学的谢朝学等研制的利用泡沫塑料制轻型保温隔热建筑材料,取得了良好的效果。
(3)热分解法。热分解法就是将高聚塑料废弃物在高温条件或低温催化的条件下分解,使其回到低分子量状态,从而把长链的高聚物转变成了短链的不饱和烃的方法。这样得到的不饱和烃可以用来重新制造其他产品。此方法可用于处理聚乙烯(PE)和聚丙烯(PP)制品的混杂回收物,但对于那些含氯的塑料制品需分开处理,这种方法可用于反复处理高聚塑料废弃物。
(4)通过催化裂解制燃料油。将塑料废弃物收集起来,通过热裂解得到汽油、柴油等液体燃料。这样既减轻废塑料对环境的污染,又节约资源,变废为宝。现在这一方面的技术日臻完善,已产生了好多专利技术。冀星等总结了废塑料油化技术的应用现状与前景。四川大学化学系李晓祥、石炎福、余华瑞等通过试验表明:混合废塑料经过催化裂解制得的90#汽油和0#柴油的质量均达到国家标准。
(5)焚烧回收热能。对于难以分捡的混杂型废旧塑料,将其作为燃料焚烧具有明显优点:不需繁杂的预处理,也不需与生活垃圾分离,而且其生热值与相同种类的燃料油相当。残渣较少,密度较大,易于填埋处理。据统计,PE的燃烧热为46.63GJ/kg,PP的燃烧热为43.95GJ/kg,PVC的燃烧热为18.06GJ/kg。可见,PE、PP、PVC的燃烧热非常大。因此,可利用焚烧法来处理并充分利用其释放出的热量。但是,我们必须考虑一些持久性有机环境污染物的生成,以及这些燃烧产物对人类和生态环境的潜在危害。如,聚氯乙烯(PVC)燃烧产生HCl、聚丙烯腈(PAN)燃烧产生HCN、聚氨酯燃烧时会产生氰化物等,因此必须在焚烧炉上安装污染气体的吸收装置,以实现整个流程的绿色化。
二、可降解塑料的性能、应用及前景
可降解塑料作为一种治理白色污染的全新技术途径,经过多年研究开发,已取得令人满意的进展。目前,主要的可降解塑料分为光降解塑料、生物降解塑料,以及光-生物双降解塑料三大类。光降解和光-生物降解塑料制品虽加工简单、成本低廉,但控制降解难度较大,不宜进入垃圾填埋系统。完全生物降解塑料降解性能较理想,但其加工难度较大,工艺配方以及边角料的回收利用等技术问题还有待进一步提高和完善,生产成本较高,价格昂贵并且用后需要全面地堆肥处理。
1、光降解塑料和光—生物降解塑料。光降解塑料就是靠吸收太阳光引起光化学反应而分解的塑料。光降解塑料的制备方法大致有两种:一是在高分子材料中添加光敏感剂,敏感剂吸收光能后所产生的自由基促使高分子材料发生氧化作用,达到裂化的目的。二是利用共聚方式,将适当的光敏感剂倒入高分子结构内赋予材料光降解的特性。常用的光降解剂有:金属盐类、二茂铁衍生物类、羧酸盐类、烷基硫代氨基甲酸铁类等。塑料制成的地膜有三个特点:①使用后,在阳光照射下可自行光分解,分解后的小残体可被土壤中的微生物继续分解。②使用寿命可以控制。③节省了回收地膜的费用,且解决了残膜对土壤和环境的污染。
光降解塑料的降解速度取决于日照的时间和强度,且降解后在被微生物分解前碎片易形成二次污染。光降解技术与生物降解技术结合:一是可以克服淀粉基塑料在非生物环境中难降解的问题;二是可以利用光敏体系的复合配比、用量来实现降解时间人为控制的目的。因此,目前工业化较多的是光降解技术与生物降解技术结合的双降解淀粉塑料。在一次性使用地膜中可采用食用淀粉或无机矿物质填充的可控光-生物降解塑料的全面降解技术进行实用性研究。我国可覆盖地膜的面积为5亿多亩,用量高达40万吨,使用价格低廉的光-生物降解塑料地膜较适宜。对于厚度0.005mm~0.015mm的降解地膜也可采用塑料单纯光氧降解技术,但一定要做到时控降解。这对解决废弃地膜污染农田的问题,造福子孙后代,具有深远意义。
2、生物降解塑料。生物降解塑料是指一类由自然界存在的微生物如细菌、霉菌(真菌)和藻类的作用而引起降解的塑料。理想的生物降解塑料是一种具有优良的使用性能、废弃后可被环境微生物完全分解、最终无机化而成为自然界中碳素循环的一个组成部分的高分子材料。“纸”是一种典型的生物降解材料,而“合成塑料”则是典型的高分子材料。因此,生物降解塑料是兼有“纸”和“合成塑料”这两种材料性质的高分子材料。生物降解塑料可分为完全生物降解塑料和破坏性生物降解塑料两种。破坏性生物降解塑料主要包括淀粉改性(或填充)聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯(PS)等。完全生物降解塑料主要是由天然高分子(如淀粉、纤维素、甲壳质)或农副产品经微生物发酵或合成具有生物降解性的高分子材料,如热塑性淀粉塑料、脂肪族聚酯、聚乳酸、淀粉/聚乙烯醇等均属这类塑料。
尽管生物降解塑料的研发取得了长足的发展,但推广异常困难。一是因为可降解塑料袋承重能力低,不能满足顾客多装东西和反复使用的要求。二是可降解塑料袋色泽暗淡发黄,透明度低,给人一种不洁和难看之感,用起来不放心。三是价格偏高,成本难以接受。
3、可降解塑料的开发趋势及发展前景。可降解塑料尽管存在种种问题,但它的发展前景十分光明,主要表现在以下几个方面:①积极开发高效廉价光敏剂、氧化剂、生物诱发剂、降解促进剂和稳定剂等,进一步提高可降解塑料的准时可控性、用后快速降解性和完全降解性。②为避免二次污染,以天然高分子微生物合成高分子的完全生物降解塑料将会越来越受到重视。③水解性塑料和可食性材料由于具有特殊的功能和用途而备受瞩目,也成为环境适应性材料的又一热点。④充分利用基因工程技术培育可生产聚酯的生物性植物以降低生物降解塑料的成本。
总之,可降解塑料的发展,不但在一定程度上缓解了环境污染,而且对日益枯竭的石油资源也是一个补充。绿色环保的塑料包装材料和塑料建材直接关系到人类的生活质量和生存发展,是建设资源节约型、环境友好型社会的切实体现。

0 条回复

暂无讨论,说说你的看法吧!

 回复

你需要  登录  或  注册  后参与讨论!