浅谈机械设备状态故障与监测
仪器信息网 · 2009-08-02 21:40 · 6848 次点击
摘要:随着信息技术和计算机技术的发展,大量的科研成果被应用到机械系统状态监测和故障诊断技术的研究当中,比如近年来兴起的神经网络技术和数据融合技术正在故障诊断领域中得到广泛的应用。而与此同时,信息技术和计算机技术有关学科的自身内涵也得到了完善和延拓。
关键词:机械设备诊断技术故障诊断
0引言
机械设备故障诊断技术随着近十多年来国际上电子计算机技术、现代测量技术和信号处理技术的迅速发展而发展起来,是一门了解和掌握机械设备在使用过程中的状态,确定其整体或局部是否正常,早期发现故障及原因,并预报故障发展趋势的技术。
1故障诊断的发展过程
设备故障诊断是指在一定工作环境下,根据机械设备运行过程中产生的各种信息判别机械设备是正常运行还是发生了异常现象,并判定产生故障的原因和部位,以及预测、预报设备状态的技术,故障诊断的实质就是状态的识别。诊断过程主要有3个步骤:①检测设备状态的特征信号;②从所检测的特征信号中提取征兆;③故障的模式识别。其大致经历以下3个阶段:①基于故障事件原故障诊断阶段,主要缺点是事后检查,不能防止故障造成的损失;②基于故障预防的故障诊断阶段;③基于故障预测的故障诊断阶段,它是以信号采集与处理为中心,多层次、多角度地利用各种信息对机械设备的状态进行评估,针对不同的设备采取不同的措施。
2开展故障诊断技术研究的意义
应用故障诊断技术对机械设备进行监测和诊断,可以及时发现机器的故障和预防设备恶性事故的发生,从而避免人员的伤亡、环境的污染和巨大的经济损失。应用故障诊断技术可以找出生产设备中的事故隐患,从而对机械设备和工艺进行改造以消除事故隐患。状态监测及故障诊断技术最重要的意义在于改革设备维修制度,现在多数工厂的维修制度是定期检修,造成很大的浪费。由于诊断技术能诊断和预报设备的故障,因此在设备正常运转没有故障时可以不停车,在发现故障前兆时能及时停车。按诊断出故障的性质和部位,可以有目的地进行检修,这就是预知维修—现代化维修技术。把定期维修改变为预知维修,不但节约了大量的维修费用,而且,由于减少了许多不必要的维修时间,而大大增加了机器设备正常运转时间,大幅度地提高生产率,产生巨大的经济效益。因此,机械状态监测与故障诊断技术对发展国民经济有相当重要的作用。
3研究现状
机械故障诊断作为一门新兴的综合性边缘学科,经过30多年的发展,己初步形成了比较完整的科学体系。就其技术手段而言,已逐步形成以振动诊断、油样分析、温度监测和无损探伤为主,其他技术或方面为辅的局面。这其中又以振动诊断涉及的领域最广、理论基础最为雄厚、研究得最具生机与活力。目前,对振动信号采集来说,计算机技术足以胜任各种场合的需要。在振动信号的分析处理方面,除了经典的统计分析、时频域分析、时序模型分析、参数辨识外,近来又发展了频率细化技术、倒谱分析、共振解调分析、三维全息谱分析、轴心轨迹分析以及基于非平稳信号假设的短时傅立叶变换、Wign-er分布和小波变换等。就诊断方法而言,除了单一参数、单一故障的技术诊断外,目前多变量、多故障的综合诊断已经兴起。人工智能的研究成果为机械故障诊断注入了新的活力,故障诊断的专家系统不仅在理论上得到了相当大的发展,而且国外已经有许多成功的应用实例,国内也有许多单位积极从事这方面的研究,并取得了一定的进展。与此同时,人工智能的另一个重要分支—人工神经网络的研究也逐步渗透到机械故障诊断领域,并己成为机械故障诊断领域的一个最新研究热点,但目前大多处于实验室阶段。最近又有人探索将人工神经网络与传统的专家系统结合起来,建造神经网络专家系统,综合二者的优势,克服二者的缺陷。就应用领域而言,机械故障诊断技术已在旋转机械、往复机械、机加工工程和各种基础零部件的故障诊断方面获得了应用,这其中以旋转机械故障应用最广、最为成熟。近几年来,机械故障诊断学科在国内外都得到了前所未有的发展,在生产中的应用已深入到各个领域,诊断理论和方法已有多种。但尽管如此,无论在技术上还是在理论方法方面都有待于进一步发展和完善。故障机理和故障特性的研究不仅应适应学科发展,而且应领先一步;新理论和新方法的应用不仅要快,还应更深入;各种理论和技术的相互渗透应不断深化;应用范围不仅应更广,而且内容也应更丰富;监测诊断应与维修保养管理结合得更紧密。
4发展趋势
4.1混合智能故障诊断技术研究将多种不同的智能技术结合起来,尤其是将神经网络、模糊逻辑与专家系统结合的诊断模型很有发展前景。这方面的研究刚开始,很多问题需要深入研究。智能诊断系统在机器学习、诊断实时性等方面的性能改善,是决定其有效性和应用性的关键。