机电控制系统故障诊断的回顾与展望(二)

  仪器信息网 ·  2009-08-02 21:40  ·  25280 次点击
3现代故障诊断的主要内容
现代故障诊断包括3方面的主要内容:①故障检测;②故障分离(诊断);③故障修复。统称为故障的检测、分离和修复(FDIA)。故障诊断系统的性能:①及时性(速度);②敏感性和鲁棒性;③误报率、漏报率、错报率和确诊率;④全面性(针对所有类型故障)。
3.1故障检测
在进行故障检测之前,需做以下假设:系统中的故障导致系统参数有变化,如故障使输出变量、状态变量、残差变量、模型参数、物理参数等其中之一或多个有变化。这是所有故障诊断方式都必须遵守的假设条件。故障检测是指确定系统是否发生故障的过程,即对一非正常状态的检测过程。通过不断监测系统可测量变量的变化,在标称情况下,认为这些变量在某一不确定性下满足一已知模式,而当系统任一部件故障发生时,这些变量偏离其标称状态。通常根据系统输出或状态变量的估计残差的特性来判断故障。目前研究的目标是检测的及时性、准确性和可靠性及最小误报和漏报率。
3.2故障诊断
故障诊断指根据残差方向和结构来分离出故障的部位,判断故障的种类,估计出故障的发生时间、大小和原因,进行评价与决策的过程。故障分类是将故障按其严重程度进行分类,以便采取相应措施。故障的评价和决策是指根据故障的类别、严重程度,决定是否采取修复、补救、隔离或改变控制率等措施,以防止故障的影响和传播,预防灾难事故的发生。
3.3故障修复
故障修复指根据故障诊断结论,或是改变控制率或是控制重构或是系统重构,使整个系统在故障发生情况下,保证稳定并改善系统性能。如对传感器故障修复来说,可用一余度传感器或一估计值代替故障传感器的输出值。基于ANN在线估计器的FDIA是一有效方式。故障修复是自主系统(AS)和智能系统(AIS)的重要环节。故障修复把故障状态检测和故障诊断与自动控制紧密联系起来,使故障诊断具有更深远意义和广阔的应用前景。故障修复理论和方法将是目前和将来的研究方向。
4现代故障诊断的发展趋势
现代故障诊断的发展方向是与容错控制、冗余控制、监控控制和余度管理等可靠性系统设计相结合的,是实现主动(视情)维修策略、监测控制、容错控制、自治控制、可信性系统等设计中的一个关键。
4.1解析余度管理
现代余度管理从硬件余度向综合余度和解析余度管理发展。过去,动态系统的容错设计是基于硬件余度(余度部件、余度系统)而实现的,如三余度和四余度系统,通过简单的表决逻辑来判断故障。硬件余度(管理)(hardwareredundancy)遇到的主要问题是重量大、体积大、费用高、飞行器承载能力小。同时“同类”余度系统具有相同的寿命周期,假如一个有故障可能其它也发生故障。但用“异类”余度系统又难以保证表决检验的一致性。为了使整个系统可靠、安全,且提高容错系统可利用性,因此有必要研究新方法消除或减少硬件余度。
进入70年代,随着计算机技术及其计算能力、可靠性的提高,现代控制理论的产生和发展,出现了以分析冗余(analyticalredundancy)取代物理(硬件)冗余的余度可靠性设计和余度管理思想。首先在仪表故障检测(IFD)中出现了这种新方式,其思想是用3个或以上不同类传感器测量系统不同的变量,产生完全不同的信号,通过一复杂综合比较逻辑来检测传感器故障。尽管是异类传感器,但所有都是由系统中同一动态状态激励的,因此具有某种功能关系。这种新方式初期称为本质余度(inherentredundancy)或功能余度(functionalredundancy),以区别于物理余度或硬件余度。后来人们把它称为分析余度或人工余度(artificalredundancy)。分析余度方式是一利用状态估计、参数估计、自适应滤波、变量阈值逻辑、统计决策理论和综合逻辑的信号处理技术,可以在电子电路或计算机上实现。目前实施的余度管理方式还是一综合方式,即包括硬件余度和解析余度。发展方向是分析余度。1971年Beard首次提出了故障检测滤波器(FDF)概念,标志着基于分析冗余(基于模型)故障诊断技术的诞生。

0 条回复

暂无讨论,说说你的看法吧!

 回复

你需要  登录  或  注册  后参与讨论!