铝合金薄板激光填丝焊接技术(下)
仪器信息网 · 2009-03-20 21:40 · 41950 次点击
激光填丝焊成形控制
激光填丝焊接技术的要害是确定焊丝的送丝位置和送丝速度。送丝位置是指在焊接方向上相对于匙孔的位置偏差(Wx)以及沿激光束轴线横穿匙孔的位置偏差(Wz),如图3所示。送丝方式分为前送丝和后送丝。前送丝是指与焊接方向相反,焊丝末端指向匙孔前边缘的送进方式;后送丝是指与焊接方向相同,焊丝末端指向匙孔后边缘的送进方式。一般认为,前送丝方式可以使填充材料在焊缝中的分布更加均匀。
图3激光焊过程中填充焊丝相对于激光束、工件表面和接缝的参数图
在激光焊接过程中,横向于焊接方向的送丝位置偏差WY(见图3)所引起的问题尤为突出。例如,对于WY=0.25mm的位置偏差,当采用?2填充焊丝时相对于直径1.0焊丝熔化效率将下降30%;相对于直径1.2焊丝熔化效率将下降36%。当位置偏差WY=0.4mm时,将造成严重不均匀的熔敷焊道。因此,WY应尽量接近0mm。而试验证实WX应控制在0.3~2mm之间焊接效果最佳。
相对于工件表面的送丝角度αw由焊接装置的几何尺寸决定,通常在比较宽的范围内即30~75。金属材料的反射率作为冲击角的函数而变化。当该角接近90时反射率达到最低。但这个角度在实际中无法实现。试验获得该角度在50~60范围内,能保证焊丝的最大稳定性和焊缝的最好力学性能。
激光填丝焊接过程中送丝速度必须和焊接速度、激光功率等焊接工艺参数相匹配,过大的送丝速度将导致焊缝余高过大,而送丝速度太小则会产生不规则的焊缝成形。专家曾指出激光焊接过程中焊丝几乎100%过渡到焊接熔池中,因此根据焊接过程的物质平衡计算出送丝速度的猜测公式。
式中:b为拼缝间隙(mm);δ为工件厚度(mm);vs为焊接速度(m/min);d为焊丝直径(mm);vf为送丝速度(m/min);k为成形系数,成形系数由余高的要求确定,约为1.2~1.3。
通过试验证实,该公式对于3mm厚铝锂合金的激光填丝焊基本符合,但是对于1.2mm厚的5A06铝合金薄板并不符合。如图4所示两个空间曲面之间为堆焊时焊缝成形较好的送丝速度选择范围。
图41.2mm厚5A06铝合金薄板送丝速度选择范围
图5为对接间隙约0.1mm,焊丝直径1.2mm,焊接速度4.5m/min,激光功率3100W,焊缝成形最好的送丝速度约是5m/min。因此,对于某种材料的激光填丝焊接技术,送丝速度的确定还具有不确定性。
图55A06铝合金薄板激光填丝焊缝形貌
间隙适应性及性能
最大间隙容许裕度指焊接过程中不能获得良好焊缝成形的起始失效处的间隙宽度。通过对接变间隙法试验证实,铝合金激光填丝焊的最大间隙容许裕度较激光焊而言有显著增加。例如,1.2mm厚的5A06铝合金薄板的对接适应间隙最大可以达到约1mm,如图6所示。这明显高于激光对接焊时最大容许间隙裕度(板厚的10﹪即0.12mm)。
对于1.2mm厚的5A06铝合金激光填丝焊接焊缝,选取典型试件进行X光探伤试验,X射线检测未发现超标缺陷,达到HB5375-87Ⅰ级焊缝的技术要求。同时,焊接接头的抗拉强度和屈服强度均达到母材水平。
图6间隙对激光填丝焊缝成形的影响
发展方向
1.多道填丝焊技术
采用多道焊技术可以提高激光焊接厚板的能力。例如焊前试板加工成阶梯形坡口还是双边V型坡口,当选用匹配的工艺参数,就能获得较好的焊缝。确定合理的焊接顺序,可以最大程度地减小焊接变形。同其他焊接方法相比,焊接坡口间隙很小,这有利于改善焊接质量,节约焊接成本,提高生产效率。
2.异种金属焊接
异种金属焊接时,由于对接的基体金属化学成分及组织有较大差异,因此采用自熔焊技术很难得到满足的接头质量。但填丝焊却可以弥补自熔焊的不足,通过选用合适的填充焊丝可以使焊接接头具有优良的综合性能。
3.激光热丝焊技术
当对焊丝未采用加热措施时,激光束的能量有很大一部分作用在焊丝上,这无疑会降低焊接速度。为了充分利用激光束的能量优势,引入了热丝焊工艺。热丝焊减少了激光消耗在焊丝上的能量,从而提高了焊接速度。激光热丝焊工艺需增加一套预热设备,一般采用电阻加热。可直接将电极接在送丝滚轮上,通过大电流将焊丝在瞬间加热至接近熔点温度,当焊丝被送到焊接熔池边时,由于焊丝表面温度很高,仅需很少的激光能量就能将其熔化。而熔化的焊丝能吸收大量的激光能量,并向母材传导。同自熔焊相比,热丝焊更有利于激光能量的吸收。因此,激光热丝焊的焊接速度可以比自熔焊更高。
激光填丝焊由于能够增加焊缝最大间隙裕度,改善接头的组织和性能,增强焊接厚板及异种金属能力,极大地扩展了激光焊接的应用范围。对激光填丝焊在材料中的进一步研究,可以推动制造技术的发展,加快对传统工业的改造。因此,激光填丝焊的研究具有广阔的前景。