等离子弧焊直接金属成形技术的工艺研究
仪器信息网 · 2009-03-30 19:49 · 9240 次点击
摘要:提出了一种基于等离子弧焊的直接金属成形新方法,通过对成形工艺的试验研究,确定了焊接电流、成形速度与成形轨迹宽度之间的对应关系;针对成形轮廓的表面质量问题,实施了根据轮廓矢量进行切向送丝的填充方案;并采用循环水冷的温控措施解决了成形过程的过热问题。
送丝角度对成形轨迹的影响
本文在实验中发现,对零件外轮廓进行扫描时,填充丝材送入的方向同外轮廓切向的夹角对轮廓成形的质量有显著的影响。在直接金属成形系统运动机构的早期设计中,焊炬和送丝机构固定不动,保持送丝方向在空间上不变,这样当XY二维工作台沿着成形轮廓插补运动时,送丝方向与成形轮廓的运动方向就会形成一定的夹角α。当夹角α较小时,轨迹成形所受影响不大,但是,当α增加到一定程度后成形轨迹的表面波纹度开始增大,表面质量明显变差。
送丝角度保持在小角度范围内时,成形轨迹表面质量较好;而随着送丝角度的增加,成形轨迹表面的波浪度增大;当送丝角度进一步增大时,熔化的焊丝不能进入熔池,团成球状凝结于扫描路径外侧,不能形成完整的轨迹。
成形过程不均匀的热场和力场分布,是造成这种现象的主要原因。小角度,特别是切向送丝时,焊丝送入的方向与焊接热场移动的方向相符,焊丝能够得到足够的热量迅速熔化,并与熔池形成搭桥过渡,顺利进入熔池。固定送丝方向时,随着焊丝与轨迹切向夹角的增大,焊丝吸收的热量减少,难以形成顺利的搭桥过渡,焊丝熔化后团聚成球状,难以送入熔池中心,在自重作用下落于熔池边缘。
成形件的外轮廓总是由各种形式的曲线构成的,如果在成形曲线的过程中保持送丝的角度不变,势必会引起熔滴过渡的条件时好时坏,容易在曲线轨迹表面形成图7中所示的积瘤、夹丝等缺陷。因此,成形过程中,为了保证成形轨迹轮廓的一致均匀性,应根据成形轮廓切向的变化,不断调整送丝角度,使二者保持一致。
为了方便送丝角度的动态调整,本文对直接金属成形系统的机构部分进行了改进,将先前固定的焊炬和送丝机构置于回转工作台上,回转工作台通过步进电机在计算机系统的控制下可以随扫描轨迹的走向自适应旋转,以保证送丝机构沿扫描轮廓的切向均匀连续地送丝。
冷却措施
在成形过程中,成形件要承受电弧热量的连续输入,从而造成其整体温度升高,成形轨迹热影响区变大,熔池金属流动性增强等热效应,这对于控制成形件表面质量极为不利。而焊后引起的整体热变形对成形件的尺寸及形状都有很大的影响。对于具有薄壁特征的成形件,其传热途径更为局限,因此,这种热效应就更为严重。因此,有必要采取可靠的传热措施,控制成形过程中成形件的热量传递。
针对这种现象,本文在实验中采用循环水冷的方法,增强成形过程中成形件的热量传递。将基底放入水槽中进行焊接成形;当成形过程中出现过热效应时,开始通入循环冷却水;并使冷却水的液面始终与当前熔焊层保持3mm~5mm的距离,以保持良好的散热效果。这样可以大大改善成形件的热传递过程,同时也可在一定程度上增强保护气体的保护效果。