MIG/MAG焊的冶金特点与电流极性的选择
仪器信息网 · 2009-03-30 19:49 · 8276 次点击
惰性气体(Ar或He)是元素周期表中的0族元素,既不与高温的液体金属发生化学反应也不溶解于金属中。在焊接时它能屏蔽电弧与熔池周围的空气而起到保护作用。所以适合于焊接铝、镁和不锈钢等金属。
因MIG焊是利用纯氩或纯氦作为保护气体,所以冶金反应比较单纯,在理想情况下基本金属和焊丝中所含有的各种元素几乎不烧损,但是实际上合金元素总要减少,主要原因如下:
1)合金元素的蒸发。在电弧空间和电极斑点处的温度高达几千度,甚至近万度,超过了被焊金属本身和合金元素的沸点。所以能使沸点低而在液体金属中饱和蒸气压高的合金元素蒸发,如Al-Mg合金、Cu-Zn合金和Fe-Mn合金中的Mg、Zn、Mn三种元素是极易蒸发的。
2)气体介质的影响。MIG焊中惰性气体的纯度和MAG焊中的氧化性气体,都与熔化的基体金属和焊丝金属发生化学反应。例如,一般工业用氩气是制氧的副产品,虽经提纯,氩中仍含有微量的氧、氮和水分等。它们将与金属发生冶金反应。
焊接不锈钢和碳钢时多采用MAG焊,这时保护气体中的氧化性气体有O2和CO2等,它将烧掉一些金属中的合金元素,如Zr、Ti、Al和Cr、Si、Mn等。
MIG/MAG焊电流极性的选择
通常MIG焊应采用直流电源。因为交流电源将破坏电弧稳定性,在电流过零时,电弧难以再引燃。
大家知道,直流焊接时,电流极性有两种接法,直流正极性接法和直流反极性接法。直流正极性接法是指电极为阴极和工件为阳极;直流反极性接法则恰好相反。
MIG/MAG焊多采用直流反极性。主要原因如下:
1)电弧稳定。因阳极斑点牢固地出现在焊丝端头,使得电弧不发生飘移。相反,采用直流正极性接法时,焊丝为阴极,因阴极斑点总是寻找氧化膜,所以阴极斑点不断地沿焊丝上、下飘移,移动最大可以达到20~30mm,从而破坏了电弧的稳定性。
2)在焊缝附近产生阴极破碎作用。因工件为阴极,所以在焊缝附近的金属氧化膜能被阴极破碎作用而去除。这正适合于焊接铝、镁及其合金。
3)焊缝成形美观。焊缝表面平坦、均匀而熔深为指状。相反,直流正极性时,由于焊丝熔化速度大大加快,使得焊缝的余高增大。
钨极氩弧焊时的极性选择
钨极氩弧焊采用直流正极性(DCSP),钨极为阴极,因钨极的熔点和沸点高,为热阴极。钨极发射电子能力强,在其发射电子的同时,带走了逸出功的热量,对钨极产生了冷却作用。因此可以采用较细的钨极,通过较大电流,电流密度较大,则电弧稳定,焊缝成形良好,形成深而窄的焊缝形状。甚至在将钨极端头磨成圆锥状的情况下,焊接时仍能保持圆锥尖的形状,使得电弧在尖端处产生,于是尽管小电流时,电弧仍十分稳定,有利于焊接薄板。DCSP法主要用于钢、铜和钛等金属的焊接。
直流反极性(DCRP)时,钨极为阳极,弧柱中的电子带来弧柱高温和进入阴极时释放逸出功,这些能量均用于加热钨极,而使钨极过热和熔化。因此在钨极为阳极时许用电流很小,仅为钨极为阴极时的1/10左右。钨极端头形状都是圆球状。另一方面,工件为阴极,阴极斑点不稳定。由于阴极斑点的游动,使得电弧分散,加热不集中,而得到浅而宽的焊缝。同时对于铝及其合金,由于其氧化膜的逸出功较低,所以阴极斑点游动时,不断地寻找和清理氧化膜,从而该接法适于焊接铝基和镁基合金。由于反极性易使钨极烧损而造成焊缝夹钨,实际上DCRP法很少采用。
考虑到钨极的许用电流、电弧稳定性、焊缝成形及阴极清理作用等因素,焊接铝合金时不宜采用直流电流。DCRP法有钨极烧损和阴极清理作用,而DCSP法钨极许用电流大,较小烧损,但却没有阴极清理作用。因此焊接铝合金时,主要采用交流电流(AC)。
总之,钨极氩弧焊时,对钨极而言,阳极比阴极产热多,这一点不同于GMAW。铝、镁及其合金采用交流,薄件也可以采用DCRP法(但不推荐)。其余金属如钢、铜和钛等都采用直流正极性(DCSP)接法。
熔化极气体保护电弧焊的极性选择
选择极性的原则首先应满足电弧稳定性,其次才是焊丝的熔化系数和焊缝成形等。通常GMAW都采用DCRP。尽管焊丝熔化系数低些,但由于电弧稳定,也就是阳极主要分布在焊丝端头,保证弧长基本不变,从而保证了焊丝熔化和熔滴过渡均匀。反之,采用DCSP接法,焊丝为阴极,这时阴极斑点沿焊丝表面上下跳动,引起电弧十分不稳定和熔滴过渡缺乏规律性。
另一方面从焊透情况看,也希望采用DCRP接法。这时焊缝成形好,焊铝时又有阴极清理作用。而DCSP接法时,焊缝余高较大,熔深浅,焊缝成形不良。只有在堆焊工艺时,采用DCSP接法,为的是熔敷速度快。
总之,GMAW法焊接时,通常均采用直流反极性(DCRP)。