焊接工艺问答——熔焊原理(四)
仪器信息网 · 2009-03-30 19:49 · 24468 次点击
17、焊接时,如何选择线能量?
生产中,根据不同的材料成分,在保证焊缝成形良好的前提下,适当调节焊接工艺参数,以合适的线能量进行焊接,可以保证焊接接头具有良好的性能。例如,焊件装配定位焊时,由于焊缝长度短,截面积小,冷却速度快,焊缝容易开裂,特别是对于一些淬硬倾向较大的钢种更是如此,此时应该选择较大的线能量进行焊接,以防焊缝开裂。但是对于强度等级较高的低合金钢、低温钢,线能量必须严格控制,因为线能量增大会导致焊接接头塑性和韧性的下降。特别是当焊接奥氏体不锈钢时,为了提高焊接接头的耐蚀性,一定要采用小电流、快速焊的工艺参数,使线能量保持在最低值。
18、什么是预热?预热有何作用?
焊前对焊件整体或焊接区域局部进行加热的工艺手段称为预热。对于焊接强度级别较高、有淬硬倾向的钢材、导热性能特别良好的材料、厚度较大的焊件,以及当焊接区域周围环境温度太低时,焊前往往需要对焊件进行预热。预热的主要目的是降低焊接接头的冷却速度,预热温度见表3。从表中可以看出,预热能够降低冷却速度,但又基本上不影响在高温停留的时间,这是十分理想的。所以当焊接具有淬硬倾向的钢材时,降低冷却速度减小淬硬倾向的主要工艺措施,是进行预热,而不是增大线能量。
19、什么是层间温度?如何正确选择层间温度?
对焊件进行多层多道焊时,当焊接后道焊逢时,前道焊缝的最低温度,称为层间温度。对于要求预热焊接的材料,当需要进行多层焊时,其层间温度应等于或略高于预热温度,如层间温度低于预热温度,应重新进行预热。
焊接奥低体不锈钢时,为保持焊接接头有较高的耐蚀性,需要有较快的冷却速度,因此此时需要控制较低的层间温度,即在前道焊缝冷却到较低温度时,再进行后道焊缝的焊接。
20、什么是焊接影响区?它有什么特性?
焊接(或切割)过程中,紧靠焊缝的母材因受热影响(但未熔化)而发生金相组织力学性能变化的区域称为焊接热影响区。
熔焊时,焊接接头由两个相互联系、而其组织和性能又有区别的两个部分,即焊缝区和热影响区所组成。实践表明,焊接接头的质量不仅决定于焊缝区,并且在相当程度上还决定于热影响区,有时热影响区存在的问题比焊缝区还要复杂,特别是合金钢焊接时更是如此。所以,研究、掌握热影响区在焊接过程中组织和性能的变化,有着十分重要的意义。
21、试述固态无组织转变材料的焊接热影响区特点。
固态无组织转变的纯金属(如A1、Cu、Ni、MoTW等)以及单相固溶体合金(如Zn的质量分数<39%的α黄铜,Ni-Cu合金以及超低碳铬镍奥氏体不锈钢和超低碳高铬纯铁素体不锈钢等)在加热和冷却时都不会发生组织转变,因此其焊接热影响区非常简单,只有过热区和再结晶区(母材焊前为冷轧状态)两个区段。
⑴过热区由于这类材料在冷却过程中没有任何组织转变,因此加热过程中长大了的晶粒在冷却过程中不会有组织转变引起的重结晶细化作用,所以过热区内的晶粒长得十分粗大,并且无法通过热处理(如钢材的正火处理)来进行细化。过热区内材料的塑性和韧性很差,为此应该采用小线能量进行焊接,并且要尽量防止在同一部位进行重复焊接,以免晶粒越长越大。
⑵再结晶区如母材焊前处于冷轧状态,焊后过热区和母材之间存在着一个具有较细晶粒的再结晶区。但在再结晶区中,由于冷轧状态的母材组织发生了再结晶,原先冷轧过程中的冷作硬化效应完全消失,因此强度降低但塑性得到了改善。
如果母材焊前是处于热轧状态或冷轧后的退火状态,则焊后热影响区无再结晶区。
22、试述不易淬火钢的焊接热影响区特点。
不易淬火钢,如低碳钢和合金元素较少的低合金高强钢(16Mn、15MnTi、15MnV钢),在固态下合金中除了有同素异构转变外,还有成分变化和第二相析出,即共析转变和Fe3C的析出,其焊接热影响区可分为过热区、重结晶区、不完全重结晶区和再结晶区等四个区段。
⑴过热区(又称粗晶区)该区紧邻焊缝,温度范围是从晶粒急剧长大的温度开始,一直到固相线的温度区间为止,对低碳钢为1100~1490℃。该区母材中的铁素体和珠光体全部变为奥氏体,奥氏体晶粒长得非常粗大,冷却后使金属的冲击韧度大大降低,一般比基本金属低25%~30%,是热影响区中的薄弱环节。
⑵重结晶区(又称正火区域或细晶区)指过热区以下,加热温度在A3以上的区域,对低碳钢为900~1100℃。空冷后得到均匀而细小的铁素体和珠光体,相当于热处理中的正火组织。重结晶区由于晶粒细小均匀,因此既具有较高的强度,又有较好的塑性和韧性,这是热影响区中综合力学性能最好的区域。但由于整个焊接接头的性能取决于接头中的最薄弱区域,所以该区性能虽好,但却发挥不了作用。
⑶不完全重结晶区(又称不完全正火区或部分相变区)指加热温度在Ac1~Ac3之间的区域,对低碳钢为750~900℃。该区母材中的全部珠光体和部分铁素体转变为晶粒比较细小的奥氏体,但仍保留部分铁素体。冷却时,奥氏体又转变为细小的铁素体和珠光体,而未溶入奥氏体的铁素体不发生转变,晶粒比较粗大,故冷却后的组织晶粒大小极不均匀,所以力学性能也不均匀,强度有所下降。
⑷再结晶区指加热温度在450℃~Ac1之间的区域,对低碳钢为450~750℃。对于经过压力加工,即经过塑性变形的母材,晶粒发生破碎现象,在此温度区域内,再次变成完整的晶粒,称为再结晶。在本区域没有发生同素异构转变,组织没有变化,因此金属的力学性能变化不大,仅塑性稍有改善。对于焊前未经塑性变形的母材,本区不出现。
23、什么是魏氏组织?它对焊接接头的性能有何影响?
不易淬火钢焊接热影响区中的过热区,由于奥氏体晶粒长得非常粗大,这种粗大的奥氏体在较快的冷却速度下会形成一种特殊的过热组织,其组织特征为在一个粗大的奥氏体晶粒内会形成许多平行的铁素体针片,在铁素体针片之间的剩余奥氏体最后转变为珠光体,这种过热组织称为魏氏组织。魏氏组织不仅晶粒粗大,而且由于大量铁素体针片形成的脆弱面,使金属的韧性急剧下降,这是不易淬火钢焊接接头变脆的一个主要原因。
魏氏组织的形成决定于过热区的过热程度,即金属在高温下停留的时间。手弧焊时,热影响区在高温下停留的时间较短,晶粒长大并不严重;而电渣焊时,热影响区在高温下停留的时间很长,晶粒严重长大。因此,电渣焊就比手弧焊容易出现粗大的魏氏组织。对于同一种焊接方法,施焊时采用的线能量越大,高温下停留的时间越长,过热越严重,奥氏体晶粒长得越粗大,越容易得到魏氏组织,焊接接头的性能就越差,这是低碳钢焊接时引起热影响区性能变坏的一个主要问题。
24、试述易淬火钢的焊接热影响区特点。
易淬火钢包括碳钢(35、40、45、50钢)、低碳调质高强钢(ωC㈠≤0.25%)、中碳调质高强钢(ωC为0.25%~0.45%)、耐热钢和低温钢,其热影响区在焊接空冷条件下也能得到马氏组织,处于淬火状态。如果母材焊前处于退火状态,则焊后热影响区的组织可分为完全淬火区和不完全淬火区两个区段,如果母材焊前处于淬火状态,则还会形成一个回火区。
⑴完全淬火区指加热温度超过Ac3以上的区段,焊后奥氏体全部转变为马氏体,包括了相当于低碳钢焊接热影响区中的过热区和重结晶区。该区由于存在淬火组织,所以强度和硬度增高,塑性和韧性下降,并且容易产生冷裂纹。
⑵不完全淬火区指加热温度在Ac1~Ac3之间的区段,焊后奥氏体转变为马氏体,原铁素体保持不变,仅有不同程度的长大,最后形成马氏体-铁素体的组织。该区段的组织和性能很不均匀,塑性和韧性下降。
⑶回火区如果母材焊前处于淬火状态,则在温度低于Ac1的区段,会发生程度不同的回火过程,称为回火区。回火区的硬度下降、塑性增高。
25、焊接熔池结晶过程中会产生哪些缺陷?
产生的缺陷有:
⑴结晶裂纹(凝固裂纹)焊接熔池结晶过程中,金属收缩产生的拉应力,将晶界上的低熔点共晶液膜拉开导致产生结晶裂纹。结晶裂纹主要发生在含杂质较多的钢、单相奥氏体钢、镍基合金、铝合金、钼合金等的焊缝金属中。
⑵气孔高温下焊接熔池中熔解了大量的氢、氧、氮,在快速冷却过程中,这些气体来不及逸出,而留在焊缝金属中(内部或表面)形成穴孔。
⑶夹渣焊接熔渣残留在焊缝金属中的现象。
⑷偏析由于焊接熔池结晶速度较快,形成焊缝中化学元素的分布不均匀,产生偏析现象。