高能束流焊接技术
仪器信息网 · 2009-03-30 19:49 · 29870 次点击
当前高能束流焊接被关注的主要领域是:①高能束流设备的大型化—功率大型化及可加工零件(乃至零件集成)的大型化。②新型设备的研制,诸如,脉冲工作方式以及短波长激光器等。③设备的智能化以及加工的柔性化。④束流品质的提高及诊断。⑤束流、工件、工艺介质相互作用机制的研究。⑥束流的复合。⑦新材料的焊接。⑧应用领域的扩展。
1、激光焊接的最新进展
1.1新型激光器
(1)直流板条式(DCSlab)CO2激光器、(2)二极管泵浦的YAG激光器、(3)CO激光器、(4)半导体激光器、(5)准分子激光器。
1.2激光器功率的大型化、脉冲方式以及高质量的光束模式
以美国PRC公司为例,几年前,用于切割的CO2激光器功率主要是1500~2000W,而近期的主导产品是4000~6000W,6000W可切割的不锈钢厚度、碳钢厚度分别为35mm和40mm。
1.3设备的智能化及加工的柔性化
尤其是对YAG激光,由于可用光纤传输,给加工带来了极大的方便。
其主要特点是:①一机多用。②采用一台激光机可进行多工位(可达6个)加工。③光纤长度最长可达60m。④开放式的控制接口。⑤具有远距离诊断功能。
1.4束流的复合
最主要的是激光-电弧复合。深熔焊接时,熔池上方产生等离子体,复合加工时,激光产生的等离子体有利于电弧的稳定;复合加工可提高加工效率;可提高焊接性差的材料诸如铝合金、双相钢等的焊接性;可增加焊接的稳定性和可靠性;通常,激光加丝焊是很敏感的,通过与电弧的复合,则变的容易而可靠。
激光-电弧复合主要是激光与TIG、Plasma以及GMA。通过激光与电弧的相互影响,可克服每一种方法自身的不足,进而产生良好的复合效应。
GMA成本低,使用填丝,适用性强,缺点是熔深浅、焊速低、工件承受热载荷大。激光焊可形成深而窄的焊缝,焊速高、热输入低,但投资高,对工件制备精度要求高,对铝等材料的适应性差。Laser-GMA的复合效应表现在:电弧增加了对间隙的桥接性,其原因有二:一是填充焊丝,二是电弧加热范围较宽;电弧功率决定焊缝顶部宽度;激光产生的等离子体减小了电弧引燃和维持的阻力,使电弧更稳定;激光功率决定了焊缝的深度;更进一步讲,复合导致了效率增加以及焊接适应性的增强。
从能量观点看,激光电弧复合对焊接效率的提高十分显著。这主要基于两种效应,一是较高的能量密度导致了较高的焊接速度;二是两热源相互作用的叠加效应。
GMA、激光加丝和激光电弧复合三种方法焊接时线能量、焊缝断面以及能量利用率的比较。
Laser-TIGHybrid可显著增加焊速,约为TIG焊接时的2倍;钨极烧损也大大减小,寿命增加;坡口夹角亦减小焊缝面积与激光焊时相近。阿亨大学弗朗和费激光技术学院研制了一种激光双弧复合焊接,与激光单弧复合焊相比,焊接速度可增加约1/3,线能量减小25%。
英国Conventry大学现代连接中心亦有Laser-plasma复合焊接的报导。其优点是:提高焊接速度和熔深;由于电弧加热,金属温度升高,降低了金属对激光的反射率,增加了对光能的吸收。在小功率CO2激光试验基础上,还要在12000WCO2激光以及光纤传输的2kWYAG激光器上进行,并为机器人进行PALW打基础。
1.5铝合金的激光焊接
铝合金由于比强度高、抗腐蚀性好而得以广泛应用。CO2激光焊接铝合金的困难主要在于高的反射率以及导热性好,难以达到蒸发温度、难于诱导小孔的形成(尤其是对Mg含量比较小时)以及容易产生气孔。提高吸收率的措施除了表面化学改性(如阳极氧化)、表面镀层、表面涂层等外,也有用激光-TIG、激光-MIG的报道,其中MIG-DCelectrodeposition方法由于表面的清理作用强和加丝的合金化作用效果为好。
最近,比利时的LCretteur和法国的SMarya对6061铝合金进行了混合气和焊剂的CO2激光焊。在给定的试验条件下表明:70%He+30%Ar、气流方向与焊接方向相反时效果为好;针对穿透焊接时焊缝背面容易产生下垂缺陷,采用75%LiF+25%LiCl的焊剂,起到了祛除氧化、改善熔化金属与背面母材的接合,使背面焊缝具有“上翘”效应,在较宽的参数区间内形成了规整的焊道。对6061铝合金的焊接表明,焊缝强度可达到母材的90%。
1.6激光熔覆
激光熔覆与其它表面改性方法相比,加热速度快、热输入少,变形极小;结合强度高;稀释率低;改性层厚度可精确控制,定域性好、可达性好、生产效率高。
激光熔覆除用于民品外,英、美等国也已用于航空机发动机Ni基涡轮叶片的耐热、耐磨层的熔覆及修复。