差压计的原理及使用方法
仪器网 · 2011-02-19 09:13 · 18220 次点击
充满管道的流体,当它流经管道内的节流件时,如图4.1所示,流速将在节流件处形成局部收缩,因而流速增加,静压力降低,于是在节流件前后便产生了压差。流体流量愈大,产生的压差愈大,这样可依据压差来衡量流量的大小。这种测量方法是以流动连续性方程(质量守恒定律)和伯努利方程(能量守恒定律)为基础的。压差的大小不仅与流量还与其他许多因素有关,例如当节流装置形式或管道内流体的物理性质(密度、粘度)不同时,在同样大小的流量下产生的压差也是不同的。
图4.1孔板附近的流速和压力分布
1.2流量方程
式中qm--质量流量,kg/s;
qv--体积流量,m3/s;
C--流出系数;
ε--可膨胀性系数;
β--直径比,β=d/D;
d--工作条件下节流件的孔径,m;
D--工作条件下上游管道内径,m;
△P--差压,Pa;
ρl--上游流体密度,kg/m3。
由上式可见,流量为C、ε、d、ρ、△P、β(D)6个参数的函数,此6个参数可分为实测量和统计量(C、ε)两类。
(1)实测量
1)d、D式(4.1)中d与流量为平方关系,其精确度对流量总精度影响较大,误差值一般应控制在±0.05%左右,还应计及工作温度对材料热膨胀的影响。标准规定管道内径D必须实测,需在上游管段的几个截面上进行多次测量求其平均值,误差不应大于±0.3%。除对数值测量精度要求较高外,还应考虑内径偏差会对节流件上游通道造成不正常节流现象所带来的严重影响。因此,当不是成套供应节流装置时,在现场配管应充分注意这个问题。
2)ρρ在流量方程中与△P是处于同等位置,亦就是说,当追求差压变送器高精度等级时,绝不要忘记ρ的测量精度亦应与之相匹配。否则△P的提高将会被ρ的降低所抵消。
3)△P差压△P的精确测量不应只限于选用一台高精度差压变送器。实际上差压变送器能否接受到真实的差压值还决定于一系列因素,其中正确的取压孔及引压管线的制造、安装及使用是保证获得真实差压值的关键,这些影响因素很多是难以定量或定性确定的,只有加强制造及安装的规范化工作才能达到目的。
(2)统计量
1)C统计量C是无法实测的量(指按标准设计制造安装,不经校准使用),在现场使用时最复杂的情况出现在实际的C值与标准确定的C值不相符合。它们的偏离是由设计、制造、安装及使用一系列因素造成的。应该明确,上述各环节全部严格遵循标准的规定,其实际值才会与标准确定的值相符合,现场是难以完全满足这种要求的。
应该指出,与标准条件的偏离,有的可定量估算(可进行修正),有的只能定性估计(不确定度的幅值与方向)。但是在现实中,有时不仅是一个条件偏离,这就带来非常复杂的情况,因为一般资料中只介绍某一条件偏离引起的误差。如果许多条件同时偏离,则缺少相关的资料可查。
2)ε可膨胀性系数ε是对流体通过节流件时密度发生变化而引起的流出系数变化的修正,它的误差由两部分组成:其一为常用流量下ε的误差,即标准确定值的误差;其二为由于流量变化ε值将随之波动带来的误差。一般在低静压高差压情况,ε值有不可忽略的误差。当△P/P≤0.04时,ε的误差可忽略不计。
2分类
差压式流量计分类如表4.1所示。
表4.1差压式流量计分类表
分类原则
分类类型
按产生差压的作用原理分类
1)节流式;2)动压头式;3)水力阻力式;4)离心式;5)动压增益式;6)射流式
按结构形式分类
1)标准孔板;2)标准喷嘴;3)经典文丘里管;4)文丘里喷嘴;5)锥形入口孔板;6)1/4圆孔板;7)圆缺孔板;8)偏心孔板;9)楔形孔板;10)整体(内藏)孔板;11)线性孔板;12)环形孔板;13)道尔管;14)罗洛斯管;15)弯管;16)可换孔板节流装置;17)临界流节流装置
按用途分类
1)标准节流装置;2)低雷诺数节流装置;3)脏污流节流装置;4)低压损节流装置;5)小管径节流装置;6)宽范围度节流装置;7)临界流节流装置;
2.1按产生差压的作用原理分类
1)节流式依据流体通过节流件使部分压力能转变为动能以产生差压的原理工作,其检测件称之为节流装置,是DPF的主要品种。
2)动压头式依据动压转变为静压的原理工作,如均速管流量计。
3)水力阻力式依据流体阻力产生的压差原理工作,检测件为毛细管束,又称层流流量计,一般用于微小流量测量。
4)离心式依据弯曲管或环状管产生离心力原理形成的压差工作,如弯管流量计,环形管流量计等。
5)动压增益式依据动压放大原理工作,如皮托-文丘里管。
6)射流式依据流体射流撞击产生原理工作,如射流式差压流量计。