统计学在检验过程中的应用

  仪器信息网 ·  2011-04-14 22:54  ·  37774 次点击
统计学的中心问题就是如何根据样本去探求有关总体的真实情况。因此,如何从一个总体中抽取一些元素组成样本,什么样的样本最能代表总体,这直接影响着统计的准确性。如果抽取元素的方法是使总体中的元素成分不改,所观测到的数值是互相独立的随机变量,并有着和总体一样的分布,这样的样本是一个简单的随机样本,它是总体的最好代表,而取得简单随机样本的过程叫做简单随机取样。
简单随机取样就是重复进行同一随机试验,也就是指每次试验都在同一组条件下进行,因而每次试验得到什么结果,其可能程度都是固定不变的。对于有限总体,简单随机抽样意味着每次抽出一个元素后,放还再抽,若不放还,总体的成分将有所改变,那么再抽时,出现各种结果的可能程度就相对地改变了。至于无限总体则没有区分“放回”或“不放回”的必要。
除上述原则外,另一方面,获得样本的具体方法能否保证观察值是独立的,这是问题的关键,因此,一样本的随机与否还取决于获得样本的具体方法。
在具体进行取样时,必须根据研究目的的不同,选择不同的取样方法。
①单纯随机取样法先把每个个体编号,然后用抽签的方式从总体中抽取样本。这种方法适用于个体间差异较小、所需抽选的个体数较少或个体的分布比较集中的研究对象。
②分区随机取样法将总体随机地分成若干部分,然后再从每一部分随机抽选若干个体组成样本。这种抽样法可以更有组织地进行,而且中选的个体在总体的分布比单纯随机取样更均匀。
③系统取样法先有系统地将总体分成若干组,然后随机地从第一组决定一个起点,如每组15个元素,决定从第一组的第13个元素选起,那么以后选定的单位即28,43,58,73等等。
④分层取样法根据对总体特性的了解,把总体分成若干层次或类型组,然后从各个层次中按一定比例随机抽选。这种方法的代表性好,但若层次划分得不正确,也不能获得有高度代表性的样本。

0 条回复

暂无讨论,说说你的看法吧!

 回复

你需要  登录  或  注册  后参与讨论!