地图投影
仪器信息网 · 2008-10-11 21:22 · 13787 次点击
目录
概念
原理
发展简史
基本方法
投影变形
投影分类
常用投影
应用
概念
data/attachment/portal/201111/06/090902afyyf7fasok9kea9.jpg地图投影
由于球面上任何一点的位置是用地理坐标(λ,φ)表示的,而平面上的点的位置是用直角坐标(χ,у)或极坐标(r,)表示的,所以要想将地球表面上的点转移到平面上,必须采用一定的方法来确定地理坐标与平面直角坐标或极坐标之间的关系。这种在球面和平面之间建立点与点之间函数关系的数学方法,就是地图投影方法。
地图投影变形是球面转化成平面的必然结果,没有变形的投影是不存在的。对某一地图投影来讲,不存在这种变形,就必然存在另一种或两种变形。但制图时可做到:在有些投影图上没有角度或面积变形;在有些投影图上沿某一方向无长度变形。
地球椭球体表面是个曲面,而地图通常是二维平面,因此在地图制图时首先要考虑把曲面转化成平面。然而,从几何意义上来说,球面是不可展平的曲面。要把它展成平面,势必会产生破裂与褶皱。这种不连续的、破裂的平面是不适合制作地图的,所以必须采用特殊的方法来实现球面到平面的转化。
球面上任何一点的位置取决于它的经纬度,所以实际投影时首先将一些经纬线交点展绘在平面上,并把经度相同的点连接而成为经线,纬度相同的点连接而成为纬线,构成经纬网。然后将球面上的点按其经纬度转绘在平面上相应的位置。由此可见,地图投影就是研究将地球椭球体面上的经纬线网按照一定的数学法则转移到平面上的方法及其变形问题。其数学公式表达为:
χ=f1(λ,φ)y=f2(λ,φ)(2-1)
根据地图投影的一般公式,只要知道地面点的经纬度(λ,φ),便可以在投影平面上找到相对应的平面位置(χ,у),这样就可按一定的制图需要,将一定间隔的经纬网交点的平面直角坐标计算出来,并展绘成经纬网,构成地图的“骨架”。经纬网是制作地图的“基础”,是地图的主要数学要素。
原理
data/attachment/portal/201111/06/090905p1o1sfkmdehmfh7o.gif地球
由于投影的变形,地图上所表示的地物,如大陆、岛屿、海洋等的几何特性(长度、面积、角度、形状)也随之发生变形。每一幅地图都有不同程度的变形;在同一幅图上,不同地区的变形情况也不相同。地图上表示的范围越大,离投影标准经纬线或投影中心的距离越长,地图反映的变形也越大。因此,大范围的小比例尺地图只能供了解地表现象的分布概况使用,而不能用于精确的量测和计算。
地图投影的实质就是将地球椭球面上的地理坐标转化为平面直角坐标。用某种投影条件将投影球面上的地理坐标点一一投影到平面坐标系内,以构成某种地图投影。
发展简史
data/attachment/portal/201111/06/090906djzz3onffzvjexs3.jpg地图投影
地图投影最早用来编制天体图,用于编制地球表面的地图是始于公元前3世纪的埃拉托色尼。他编制的以地中海为中心的当时已知世界的地图上应用了经纬线互相垂直的等距离圆柱投影。16世纪G.墨卡托创用正轴等角圆柱投影,编制了供航海用的世界地图。17~18世纪,地图投影逐渐具有现代的特点,并于实测地形图如西欧三角测量应用了卡西尼父子设计的投影;J.H.兰勃特提出等角投影的理论,并设计出等角圆锥、等面积方位和等面积圆柱投影;19世纪,由于军事制图的发展和地形测量的扩大,地图投影主要保证大比例尺地图的数学基础。德国C.F.高斯设计提出横轴等角椭圆柱投影(高斯投影),后经德国J.克吕格尔对投影公式加以补充,称之为高斯-克吕格尔投影。19世纪末期以后俄国和苏联一些学者对投影作了较深入研究。П.Л.切比雪夫、Н.я.青格尔、Ф.Н.克拉索夫斯基和В.В.卡夫赖斯基等人,分别对圆锥投影常数的确定提出新见解;Н.А.乌尔马耶夫撰写《新投影探求法》和《数学制图学研究》,书中提出根据已知变形分布推求新投影的方法、利用数值法求出投影坐标的新方法。20世纪60年代以来,美国等国学者提出空间投影、变比例尺地图投影和多焦点地图投影,为人造地球卫星等提供了所需的投影。中国自20世纪50年代以来对地图投影也作了较深入研究,提出了双重方位投影、双标准经线等角圆柱投影等新投影法;出版了不少地图投影用表集;为适应计算机辅助地图制图的需要,提供了不少地图投影的变换方法。
基本方法
data/attachment/portal/201111/06/090906i1hli3qm3u0h81hp.jpg几何透视法
1.几何透视法
几何透视法是利用透视的关系,将地球体面上的点投影到投影面(借助的几何面)上的一种投影方法。如假设地球按比例缩小成一个透明的地球仪般的球体,在其球心或球面、球外安置一个光源,将球面上的经纬线投影到球外的一个投影平面上,即将球面经纬线转换成了平面上的经纬线。几何透视法是一种比较原始的投影方法,有很大的局限性,难于纠正投影变形,精度较低。绝大多数地图投影都采用数学解析法。
2、数学解析法
数学解析法是在球面与投影面之间建立点与点的函数关系,通过数学的方法确定经纬线交点位置的一种投影方法。大多数的数学解析法往往是在透视投影的基础上,发展建立球面与投影面之间点与点的函数关系的,因此两种投影方法有一定联系。
地图投影的建立系假定有一个投影面(平面、可展的圆锥面或圆柱面)与投影原面(地球椭球面)相切、相割或多面相切,如图1
所示。用某种投影条件将投影原面上的地理坐标点一一投影到平面坐标系内,即构成某种地图投影。其实质是将地球椭球面上地理坐标(φ、λ)转化为平面直角坐标(x、y)。它们之间的数学关系式为:
x=f1(φ、λ);y=f2(φ、λ)
式中f1、f2为函数。
投影变形
data/attachment/portal/201111/06/090906vquubscbp9bisnhv.jpg投影变形
地图是一个平面,而地球椭球面是不可展的曲面,把不可展的曲面上的经纬线网描绘成平面的图形,必然会发生各种变形。这就使地图上不同点位的比例尺不能保持一个定值,而有主比例尺和局部比例尺之分。通常地图上注明的比例尺系主比例尺,是地球缩小的比率,而表现在不同点位上的实际比例尺称之为局部比例尺。地图投影的变形,有角度变形、面积变形和长度变形。但不是所有投影都有这3种变形,等角投影就没有角度编形,等面积投影就没有面积变形,其他投影这3种变形都同时存在。了解某种投影变形的大小和分布规律,才能明确它的实际应用价值。地图投影的变形可用变形椭圆形象地来解释。变形椭圆是地球椭球面上以一点的半径为单位值的微分图,投影在平面上一般是一个微分椭圆。用它可以解释投影变形的特性和大小。
投影分类
data/attachment/portal/201111/06/090906faurgyfh6g68m9xx.gif投影分类
地图投影大都按投影的变形性质或正常位置下投影的经纬线形状进行分类的。按投影变形的性质,地图投影分为:等角投影。因a=b,所以这种投影保持小面积图形与实地相似,或者说两个方向之间的夹角大小投影后保持不变。等面积投影。因abπab=π,而实地微分圆面积πr=π(因r=1),两者相等,所以投影后面积不变。任意投影。凡不属于等角投影或等面积投影都可称之为任意投影,其中a或者b等于1的投影称耶为等距离投影。等距离投影能保持一定方向上线段的长度不变。
按正常位置下经纬线形状,地图投影分为:方位投影。纬线投影为同心圆,经线投影为同心圆的半径,两经线间的夹角与相应的经差相等。圆柱投影。纬线投影为一组平行直线,经线投影为一组与纬线正交的平行直线,其间隔与相应的经差成正比。圆锥投影。纬线投影为同心圆弧,经线投影为同心圆弧的半径,两经线间夹角与相应的经差成正比。此外,地图投影还有正轴、横轴和斜轴之分,并有切割的区别.
常用投影
1.高斯-克吕格尔投影。这种投影假想有一个椭圆柱套在地球椭球的外面,并与某一子午线相切(此子午线叫中央子午线),椭圆柱的中心轴通过地球椭球的中心,然后用等角条件(a=b),将中央子午线东西两侧各一定经差范围的地区投影到椭圆柱面上,将柱面展成平面即成。这种投影在高纬度地面精度较好,在低纬度地区精度较差。
data/attachment/portal/201111/06/090906wdnnhjnkjqj4kdq6.jpg高斯-克吕格尔投影
2.斜轴等面积方位投影,常用于中国全图。
3.双标准纬线等角圆锥投影,宜用于仅表现中国大陆部分。
4.等差分纬线多圆锥投影,常用于世界地图。⑤正轴方位投影,常用于两极地图。
应用
data/attachment/portal/201111/06/090906vbxb3zga85k8qkg5.jpg地图投影
制图的区域的位置、形状和范围,地图的比例尺、内容、出版方式影响了投影的种类。比如在极地就应该是正轴方位投影,中纬地区使用正轴圆锥投影。
制作地形图通常使用高斯-克吕格投影,制作区域图通常使用方位投影、圆锥投影、伪圆锥投影,制作世界地图通常使用多圆锥投影、圆柱投影和伪圆柱投影。但通常而言,要依据实际情况具体选择。