软测量
仪器信息网 · 2008-10-19 21:23 · 17609 次点击
软测量的基本思想是把自动控制理论与生产过程知识有机的结合起来,应用计算机技术对难以测量或者暂时不能测量的重要变量,选择另外一些容易测量的变量,通过构成某种数学关系来推断或者估计,以软件来替代硬件的功能。应用软测量技术实现元素组分含量的在线检测不但经济可靠,且动态响应迅速、可连续给出萃取过程中元素组分含量,易于达到对产品质量的控制。
软测量技术主要由辅助变量的选择、数据采集与处理、软测量模型几部分组成。
1:机理分析主要是明确软测量的任务,确定主导变量,深入了解和熟悉装置的工艺流程,通过机理分析初步确定辅助变量。辅助变量包括变量类型、变量数目和检测点位置。辅助变量的选择应符合关联性、特异性、过程适应性、精确性和鲁棒性。辅助变量的下限是被估计的主导变量数,但是上限没有统一的理论指导,可以根据系统的自由度和生产过程的特点适当的增加上限值。
2:理论上数据采集量是多多益善,不仅可以用来建模还可以检验模型。为了保证软测量的精确性,数据采集要正确、可靠,并且进行处理:换算和误差处理。换算包括标度、转换和权函数三个个方面。误差分析主要是指随机误差和过失误差。随机误差可以采用滤波的方法解决,过失误差的解决方法有统计假设校验法、广义似然法、贝叶斯法及近年来出现的神经网络方法。
3:软测量建模是软测量技术的关键和难点,主要方法有机理建模、实验建模及二者结合建模方法。
机理建模的优点是可以充分利用已知的过程知识,从事物的本质认识外部特征,使用范围较大,但是对于某些复杂的过程难以建模。
经验建模是通过实测或依据积累的操作数据,用数学回归方法、神经网络方法得到经验模型。理论上其有很多建模方法,但是在工程实施的过程中会遇到困难,因为工艺上不允许操作条件的大幅度变化。其优缺点与机理建模正好相反。
机理建模与经验建模相结合可兼有二者长处,互补其短。