广义坐标
grxlj · 2008-10-31 11:50 · 34009 次点击
广义坐标(generalizedcoordinate)
为了确定物体(或物体系)的位置或系统的状态,根据问题的需要而任意选择的独立变数。其广义坐标数在力学中称为自由度,在热学中称之为自由度数。描述一个完整系统的独立变数。对于含n个质点的质点系,若有k个有限约束fs)(x1,x2,…,x3n;t)=0(s=1,2,…,k)联系着,则利用约束方程(见约束)消去3n个x的k个变数,剩下N=3n-k个是独立的(见拉格朗日方程)。利用变数变换,使这N个变数用其他任何N个独立的变数q1,q2,…,qN来表示。这些相互独立的变数称为广义坐标。广义坐标的个数N称为自由度。因此,3n个x坐标可以用N个q表示为xi=xi(q1,q2,…,qN);t)(i=1,2,…,3n)。
例如以长为l的细绳,悬挂一质点A于固定点O,使它在Oxy平面内运动(见图)。质点坐标为(x,y),即n=2,它与一个约束方程x2+y2=l2相联系,故N=n-1=1,只有一个广义坐标。按问题的性质,最好选用绳与铅垂线的夹角θ为广义坐标。