原子能反应堆原理
Aaron · 2008-11-08 11:24 · 39524 次点击
核反应堆:又称为原子能反应堆或反应堆,是装配了核燃料以实现可控制裂变链式反应的装置。
英文:nuclearreactor
目录
类型
用途
组成
核燃料
慢化剂
控制棒
冷却剂
屏蔽
原理
材料
类型
根据用途,核反应堆可以分为以下几种类型:①data/attachment/portal/201111/06/092349se98x8896176xk1p.jpg将中子束用于实验或利用中子束的核反应堆,包括研究堆、材料实验等。②生产放射性同位素的核反应堆。③生产核裂变物质的核反应堆,称为生产堆。④提供取暖、海水淡化、化工等方面所需热量的核反应堆,比如多目的堆。⑤为发电而发生热量的核反应,称为发电堆。⑥用于船舶、飞机、火箭等作为动力的核反应堆,称为动力堆。另外,核反应堆根据燃料类型分为天然铀堆、浓缩铀堆、钍堆,根据中子能量分为快中子堆和热中子堆等。
核反应堆nuclearreactor核电站中进行可控自持链式裂变反应以产生热能的装置。裂变反应堆利用可裂变的重元素(如铀-235、铀-233和钚-239),在中子的作用下,形成可控自持链式裂变反应,释放能量。典型的反应方程式如下:
世界上第一座裂变反应堆于1942年12月2日在芝加哥大学达到临界。那是一座以天然铀为燃料、石墨为慢化剂的实验性反应堆。第一座原型生产堆于1943年11月建成并投入运行。1954年6月27日,苏联建成世界上第一座核电站,采用天然铀石墨慢化压力管式水冷反应堆,电功率为5000千瓦。1961年7月,美国建成世界上第一座商用压水堆核电站,电功率为28.5万千瓦(初期设计值)。到80年代,裂变反应堆已成为世界上最重要的替代能源。
用途
核反应堆按用途可分为:舰船推进、发电、供热的动力堆,生产裂变材料钚或氚的生产堆,做材料和燃料辐照试验用的试验堆等;按结构可分为:均匀堆、半均匀堆、非均匀堆、固体燃料堆、液体燃料堆、游泳池式堆、壳式加压型反应堆、压力管式加压型反应堆等;按中心能谱可分为:热中子堆、快中子堆、中能中子堆和谱移堆;按冷却剂可以分为:轻水堆、重水堆、压水(重水)堆、沸水(重水)堆、气冷堆、液态金属冷却堆等;按慢化剂可分为:轻水堆、重水堆、石墨堆等;按燃料增殖性可分为:增殖堆和非增殖堆。核电站应用最普遍的是压水堆。
(1)活性区。这是进行链式反应的地方,其中放有核燃料和中子减速剂。核燃料是指产生链式反应的裂变物质。反应堆中用的有天然铀、浓缩铀(铀235的含量比天然铀中的多)、钚和铀233等。减速剂是用来降低中子速度的物质,因为裂变释放出的中子速度很大,而容易使铀235裂变的是速度较小的中子(热中子)。理想的减速剂是不吸收或很少吸收中子的物质。如重水(D2O,重氢和氧的化合物)、石墨、氧化铍等。对于浓缩铀燃料也可以用普通水做减速剂。
在活性区中一般是把核燃料做成棒状或块状插入减速剂中,也有把核燃料和减速剂均匀混合在一起的。
(2)中子反射层。用来阻挡中于飞出活性区,以减少中子的损失,一般用石墨或氧化铍。
(3)控制调节系统。链式反应的速度很快,大约每秒钟可产生1千代中子,如果不加以控制,在极短的时间内释放巨大的能量使铀爆炸,这就是原子弹。因此控制调节系统是反应堆中很关键的部分,用它来控制链式反应的速度,调节反应堆的功率,使反应堆开始或停止工作等。
调控系统主要是由吸收中子很强的物质镉或硼制成的控制棒和相应的自动控制系统组成。当反应强烈时,反应堆中的控制棒将插入的深一些,使被吸收的中子增多,因而链式反应减慢;反之,将控制棒从活性区向外拉出一些,反应速度将加快。
(4)冷却系统。反应堆中核裂变释放出的能量绝大部分转换为热能。堆中的温度是很高的,通常利用普通水、重水、液态金属钢等做冷却剂,将堆中的热量输送出来,再通过热交换装置把水变成高压高温的蒸汽,用来推动汽轮机发电。另一方面,冷却下来的冷却剂又压回堆中继续使用,它是在一个封闭的循环系统中流动着。
(5)保护层。原子核裂变时不仅放出中子,裂变后的产物还要放出大量的β射线和γ射线。为了防止这些射线对人体的危害,反应堆外层应筑有很厚的混凝土保护层。
组成
裂变反应堆系统的一般组成是:核燃料元件、控制棒及其驱动机构、慢化data/attachment/portal/201111/06/092350waf5usbnue5n0sfw.jpg剂、冷却剂以及堆内结构部件构成的堆心。堆心连同包容它的反应堆容器称为反应堆(见图)。通常所说的反应堆实际多指反应堆系统或反应堆装置。反应堆系统还包括主冷却回路管道、主冷却泵(或鼓风机)、蒸发器(或热交换器)以及进一步冷却或利用热能的二次回路。
核燃料
在反应堆中受中子作用产生核裂变反应并释放中子和热量的一种材料。作为燃料“烧掉”的是3种可裂变核素铀-233、铀-235和钚-239中的一种或其混合物。直到80年代,广泛使用的核燃料是铀。天然铀中含铀-235只有0.71%,需通过扩散、离心、激光等方法将天然铀中的铀-235和铀-238分离,提供铀-235含量比天然铀比例更高的浓缩的铀燃料。另两种可裂变核素是在反应堆中人工生产的。核燃料的应用形式有作为固体燃料的纯金属、合金、化合物(特别是钠的氧化物和碳化物)以及作为液体燃料的水溶液、液态金属溶液和悬浮物。对固体燃料来说,为了包容裂变产物和防止核燃料的氧化和腐蚀,采用金属或石墨包壳将燃料包覆起来。这种燃料称为芯体。一组用合金包覆的燃料元件(形式可为棒状、片状和环状)可装配成组件,元件之间的定位部件称为定位架。目前运行的压水堆、沸水堆、重水堆都采用这种燃料组件。用石墨包覆的核燃料颗粒与石墨混合,压制成球形或棱柱形燃料元件,可用于高温气冷堆。锆与金属铀的合金经氢化,形成铀氢锆元件,用不锈钢管包覆,可作为一种特殊试验堆(TRCA,实际是半均匀堆)的燃料元件。
慢化剂
核燃料裂变反应释放的中子为快中子,而在热中子或中能中子反应堆中要应用慢化中子维持链式反应,慢化剂就是用来将快中子能量减少,使之慢化成为中子或中能中子的物质。选择慢化剂要考虑许多不同的要求。首先是核特性:即良好的慢化性能和尽可能低的中子俘获截面;其次是价格、机械特性和辐照敏感性。有时慢化剂兼作冷却剂,既使不是,在设计中两者也是紧密相关的。应用最多的固体慢化剂是石墨,其优点是具有良好的慢化性能和机械加工性能,小的中子俘获截面和价廉。石墨是迄今发现的可以采用天然铀为燃料的两种慢化剂之一;另一种是重水。其他种类慢化剂则必须使用浓缩的核燃料。从核特性看,重水是更好的慢化剂,并且因其是液体,可兼做冷却剂,主要缺点是价格较贵,系统设计需有严格的密封要求。轻水是应用最广泛的慢化剂,虽然它的慢化性能不如重水,但价格便宜。重水和轻水有共同的缺点,即产生辐照分解,出现氢、氧的积累和复合。
控制棒
在反应堆中起补偿和调节中子反应性以及紧急停堆的作用。制作控制棒的材料其热中子吸收截面大,而散射截面小。好的控制棒材料(如铪、镝等)在吸收中子后产生的新同位素仍具有大的热中子吸收截面,因而使用寿命很长。核电站常用的控制棒材料有硼钢、银-铟-镉合金等。其中含硼材料因资源丰富、价格低,应用较广,但它容易产生辐照脆化和尺寸变化(肿胀)。银-铟-镉合金热中子吸收截面大,是轻水堆的主要控制材料。
压水堆中采用棒束控制,控制材料制成棒状,每个棒束由24根控制棒组成,均匀分布在17×17的燃料组件间。核电站通过专门驱动机构调节控制棒插入燃料组件的深度,以控制反应堆的反应性,紧急情况下则利用控制棒停堆(这时,控制棒材料大量吸收热中子,使自持链式反应无法维持而中止)。
冷却剂
由主循环泵驱动,在一回路中循环,从堆心带走热量并传给二回路中的工质,使蒸汽发生器产生高温高压蒸汽,以驱动汽轮发电机发电。冷却剂是唯一既在堆心中工作又在堆外工作的一种反应堆成分,这就要求冷却剂必需在高温和高中子通量场中工作是稳定的。此外,大多数适合的流体以及它们含有的杂质在中子辐照下将具有放射性,因此冷却剂要用耐辐照的材料包容起来,用具有良好射线阻挡能力的材料进行屏蔽。
理想的冷却剂应具有优良慢化剂核特性,有较大的传热系数和热容量、抗氧化以及不会产生很高的放射性。液态钠(主要用于快中子堆)和钠钾合金(主要用于空间动力堆)具有大的热容量和良好的传热性能。轻水在价格、处理、抗氧化和活化方面都有优点,但是它的热特性不好。重水是好的冷却剂和慢化剂,但价格昂贵。气体冷却剂(如二氧化碳、氦)具有许多优点,但要求比液体冷却剂更高的循环泵功率,系统密封性要求也较高。有机冷却剂较突出的优点是在堆内的激活活性较低,这是因为全部有机冷却剂的中子俘获截面较低,主要缺点是辐照分解率较大。应用最普遍的压水堆核电站用轻水作冷却剂兼慢化剂。
屏蔽
为防护中子、γ射线和热辐射,必须在反应堆和大多数辅助设备周围设置屏蔽层。其设计要力求造价便宜并节省空间。
对γ射线屏蔽,通常选择钢、铅、普通混凝土和重混凝土。钢的强度最好,但价格较高;铅的优点是密度高,因此铅屏蔽厚度较小;混凝土比金属便宜,但密度较小,因而屏蔽层厚度比其他的都大。
来自反应堆的γ射线强度很高,被屏蔽体吸收后会发热,因此紧靠反应堆的γ射线屏蔽层中常设有冷却水管。某些反应堆堆心和压力壳之间设有热屏蔽,以减少中子引起压力壳的辐照损伤和射线引起压力壳发热。
中子屏蔽需用有较大中子俘获截面元素的材料,通常含硼,有时是浓缩的硼-10。有些屏蔽材料俘获中子后放射出γ射线,因此在中子屏蔽外要有一层γ射线屏蔽。通常设计最外层屏蔽时应将辐射减到人类允许剂量水平以下,常称为生物屏蔽。核电站反应堆最外层屏蔽一般选用普通混凝土或重混凝土。
原理
核反应堆是核电站的心脏,它的工作原理是这样的:
原子由原子核与核外电子组成。原子核由质子与中子组成。当铀—235的原子核受到外来中子轰击时,一个原子核会吸收一个中子分裂成两个质量较小的原子核,同时放出2—3个中子。这裂变产生的中子又去轰击另外的铀—235原子核,引起新的裂变。如此持续进行就是裂变的链式反应。链式反应产生大量热能。用循环水(或其他物质)带走热量才能避免反应堆因过热烧毁。导出的热量可以使水变成水蒸气,推动气轮机发电。由此可知,核反应堆最基本的组成是裂变原子核+热载体。但是只有这两项是不能工作的。因为,高速中子会大量飞散,这就需要使中子减速增加与原子核碰撞的机会;核反应堆要依人的意愿决定工作状态,这就要有控制设施;铀及裂变产物都有强放射性,会对人造成伤害,因此必须有可靠的防护措施。综上所述,核反应堆的合理结构应该是:核燃料+慢化剂+热载体+控制设施+防护装置。
还需要说明的是,铀矿石不能直接做核燃料。铀矿石要经过精选、碾碎、酸浸、浓缩等程序,制成有一定铀含量、一定几何形状的铀棒才能参与反应堆工作。
材料
核反应堆内用以产生可控核裂变链式反应并保证安全运行的各类材料。除核燃料外,还包括冷却剂、慢化剂、反射层材料、结构材料、控制材料及屏蔽材料等(见图)。这些材料一般在高温、腐蚀介质和辐照等特殊条件下工作,因此对它们的物理、化学和力学性能有严格的要求。
核燃料核反应堆内可以实现自持核裂变链式反应的、包含易裂变核素(235U、239Pu、233U)的材料,它们在热中子作用下能进行裂变。其中235U是天然的易裂变核素;239Pu和233U分别由238U和232Th俘获中子而制得。238U和232Th称为可转换核素。铀(包括233U、235U、238U)是目前普遍使用的核燃料。钚(239Pu)在快中子堆中与238U组合可以有效地实现核燃料增殖,因而成为着重研究的核燃料之一。
慢化剂和反射层材料慢化剂用于热中子反应堆内,使裂变产生的快中子减速为热中子,从而提高裂变反应的几率。慢化剂要求对中子有高的散射截面和低的吸收截面,多为含有氢(氘)、碳和铍等轻元素的材料。除水和重水外,石墨是最常用的慢化剂。石墨化程度高而各向同性的石墨,具有较好的辐照稳定性。此外,石墨也是重要的高温结构材料。铍的慢化能力比石墨好,用它作慢化剂可以缩小堆芯的尺寸。但铍有剧毒,价格昂贵,使用受到限制。这些慢化剂也都可用作反射层材料。反射层可以减少中子漏失,使尽可能多的中子参与裂变反应。
冷却剂又称载热剂。其作用在于将反应堆内因核裂变产生的热量导出堆外,在均匀堆中还兼作流体燃料的载体。冷却剂必须具有良好的传热性和流动性。由于它流经堆芯,因此还要求具有较低的中子吸收截面、较好的辐照稳定性和化学稳定性以及对其他材料较低的腐蚀性。常用的冷却剂除CO2、He等气体以及水和重水外,还有液态金属。这种金属具有热导率高和蒸气压低的特点。钠是快中子堆中使用的冷却剂。钠的熔点较低(98℃),热导率很高,但有一定的腐蚀性,能使回路管道因质量迁移而堵塞。钠吸收中子后会产生强放射性的24Na。此外,钠很活泼,遇水即爆炸,在设计热交换器时应特别注意。某些有机材料和熔盐亦可用作冷却剂。但有机物在辐照下很容易分解,现已很少使用。熔盐(如氟盐)因为辐照稳定性和化学稳定性都很好,可作为流体燃料的载体,正在进行研究。
结构材料包括燃料包壳、堆芯构件、反应堆容器、热交换器和主回路管道等所用的材料。其中,对包壳材料的性能要求最严。热中子堆的包壳材料一般使用铝合金、镁合金和锆合金等;而快中子堆包壳材料的取材范围要宽得多。
铝合金和镁合金是较早使用的结构材料,但它们的熔点较低,只能用于低温。锆合金在高温下强度比铝合金、镁合金好,在高温纯水中的耐腐蚀性接近不锈钢,而其中子吸收截面却只有不锈钢的1/15,因此成为目前水冷动力堆中广泛使用的结构材料。一般多采用抗水腐蚀性能较好的Zr-2和Zr-4合金,它们可以适应高温和深度燃耗的条件。
奥氏体不锈钢在高温下的强度和抗腐蚀性能都很好,且价格比较便宜,也用作燃料元件包壳和其他结构材料。低合金钢和碳钢普遍用于制作核反应堆压力容器等。为了防止冷却剂的腐蚀,可在容器内壁衬以不锈钢覆面。此外,可作结构材料的还有镍、钛、铌、钒等合金。
控制材料和屏蔽材料常用的控制材料有硼、镉、铪和某些稀土元素(如钆)。硼不仅中子吸收截面高,而且吸收中子的能量范围较宽。一般以碳化硼或硼钢作为控制材料。镉的热中子吸收截面比硼高,但是对超热中子的吸收截面小,一般制成银铟镉合金用于水冷堆。铪不仅对热中子和超热中子都有高的吸收截面,而且是长寿命的中子吸收体,特别适于水冷堆。但铪非常稀缺、昂贵,因而使用受到限制。
屏蔽材料必须能够衰减γ射线,使快中子减速而被吸收。它可由某些含有重元素(如铅)、轻元素(如水中的氢)以及中子吸收剂(如硼)的材料组成。加有重晶石或铁矿石的混凝土也是常用的屏蔽材料。
各种类型的核反应堆所用的材料见表。
参考书目
(日)三岛良绩编著,张凤林、郭丰守译:《核燃料工艺学》,原子能出版社,北京,1981。(三岛良绩编著:《核燃料工学》,同文书院,东京,1972。)