散射

  grxlj ·  2008-11-26 22:25  ·  21092 次点击
data/attachment/portal/201111/06/09323322hvkc1yu73eevy3.gif散射Scattering分子或原子相互接近时,由于双方很强的相互斥力,迫使它们在接触前就偏离了原来的运动方向而分开,这通常称为散射。散射是指由传播介质的不均匀性引起的光线向四周射去的现象。如一束光通过稀释后的牛奶后为粉红色,而从侧面和上面看,是浅蓝色。
目录
简介
光的散射
和衍射的关系
主要形式
拉曼散射
参考资料
简介
data/attachment/portal/201111/06/093233gqiyqy2i112n2gqg.jpg
散射
1.光线通过有尘土的空气或胶质溶液等媒质时,部分光线向多方面改变方向的现象。叫做光的散射.超短波发射到电离层时也发生散射。
太阳辐射通过大气时遇到空气分子、尘粒、云滴等质点时,都要发生散射。但散射并不象吸收那样把辐射能转变为热能,而只是改变辐射方向,使太阳辐射以质点为中心向四面八方传播开来。经过散射之后,有一部分太阳辐射就到不了地面。如果太阳辐射遇到的是直径比波长小的空气分子,则辐射的波长愈短,被散射愈厉害。其散射能力与波长的对比关系是:对于一定大小的分子来说,散射能力和波长的四次方成反比,这种散射是有选择性的。例如波长为0.7微米时的散射能力为1,波长为0.3微米时的散射能力就为30。因此,太阳辐射通过大气时,由于空气分子散射的结果,波长较短的光被散射得较多。雨后天晴,天空呈青蓝色就是因为辐射中青蓝色波长较短,容易被大气散射的缘故。如果太阳辐射遇到直径比波长大的质点,虽然也被散射,但这种散射是没有选择性的,即辐射的各种波长都同样被散射。如空气中存在较多的尘埃或雾粒,一定范围的长短波都被同样的散射,使天空呈灰白色的。有时为了区别有选择性的散射和没有选择性的散射,将前者称为散射,后者称为漫射。
2.两个基本离子相碰撞,运动方向改变的现象。
3.在某些情况下,声波投射到不平的分界面或媒质中的微粒上而不同方向传播的现象,也叫乱反射。
4.按介质不均性的不同,光的散射可分为两大类:介质中含有许多较大的质点,它们的线度在数量级上等于光波的波长,引起的光的散射叫做悬浮质点散射。十分纯净的液体或气体,由于分子热运动而造成的密度的涨落引起光的散射叫做分子散射。
光的散射
data/attachment/portal/201111/06/0932349o11919oge1fx6q9.jpg
散射
(1)定义或解释
光束通过不均匀媒质时,部分光束将偏离原来方向而分散传播,从侧向也可以看到光的现象,叫做光的散射。
(2)说明
①引起光散射的原因是由于媒质中存在着其他物质的微粒,或者由于媒质本身密度的不均匀性(即密度涨落)。
②一般由光的散射的原因不同而将光的散射分为两类:
a.廷德尔散射。颗粒浑浊媒质(颗粒线度和光的波长差不多)的散射,散射光的强度和入射光的波长的关系不明显,散射光的波长和入射光的波长相同。
b,分子散射。光通过纯净媒质时,由于构成该媒质的分子密度涨落而被散射的现象。分子散射的光强度和入射光的波长有关,但散射光的波长仍和入射光相同。
③瑞利定律。线变小于光的波长的微粒,对入射光散射所遵循的规律是,散射光和入射光波长相同,散射光的强度和散射方向有关,并和波长的四次方成反比。按这一定律,短波光的散射比长波光要强得多,如太阳光中蓝色光被微小尘埃的散射要比红色光强十倍以上。
data/attachment/portal/201111/06/0932346jal9piag0kl91kn.jpg
散射
晴朗的天空所以呈浅蓝色,完全是大气散射太阳光的结果。大气的散射一部分来自悬浮的尘埃,大部分是密度涨落引起的分子散射。按瑞利定律,太阳光中的短波成分更多地被散射掉了,在直射的太阳光中剩余较多的是长波成分。即天空呈现蓝色。
旭日和夕阳呈红色。这是因为早晚阳光以很大的倾角穿过大气层,经历的大气层要远比中午时大得多,所有波长较短的蓝光、黄光等几乎朝侧向散射,仅剩下波长较长的红光到达观察者(接近地面的空气中有尘埃,更增强了散射作用)。
以上讨论的散射光,其波长和入射光相同,叫做瑞利散射,还有一类散射叫做并合散射(喇曼散射),其波长和入射光的波长不同。它用于研究分子结构以及分析化合物的成分。利用激光产生的并合散射可用来监测大气污染。
和衍射的关系
data/attachment/portal/201111/06/0932341zcqq12kq2qppq2s.jpg
散射
散射是指光线被无数小微粒各自反射到四面八方,比如说晚上在外面打开手电会看见光柱,按理说手电不对着你的眼睛,光线不会自己拐弯钻进你的眼睛,那你怎么会看见光柱呢?那是因为手电光被小尘埃阻挡并反射到四面八方,一部分反射到你的眼睛里。这就叫散射。
衍射是指波在经过缝隙或障碍物在它并未经过的部位也引起了波的现象(看看物理书上的图),缝隙或障碍物的尺寸跟波长差不多或比较小时这种现象才会明显。光的波长小到晕死的地步,你哪找个比光波长更小的缝去?就算找着了,有衍射你也看不见啊。所以对光就别谈什么衍射了。
主要形式
data/attachment/portal/201111/06/093235hnkpe8mc4kmemcmi.jpg
散射
1.光线通过有尘土的空气或胶质溶液等媒质时,部分光线向多方面改变方向的现象。叫做光的散射.超短波发射到电离层时也发生散射。
太阳辐射通过大气时遇到空气分子、尘粒、云滴等质点时,都要发生散射。但散射并不象吸收那样把辐射能转变为热能,而只是改变辐射方向,使太阳辐射以质点为中心向四面八方传播开来。经过散射之后,有一部分太阳辐射就到不了地面。如果太阳辐射遇到的是直径比波长小的空气分子,则辐射的波长愈短,被散射愈厉害。其散射能力与波长的对比关系是:对于一定大小的分子来说,散射能力和波长的四次方成反比,这种散射是有选择性的。例如波长为0.7微米时的散射能力为1,波长为0.3微米时的散射能力就为30。因此,太阳辐射通过大气时,由于空气分子散射的结果,波长较短的光被散射得较多。雨后天晴,天空呈青兰色就是因为辐射中青兰色波长较短,容易被大气散射的缘故。如果太阳辐射遇到直径比波长大的质点,虽然也被散射,但这种散射是没有选择性的,即辐射的各种波长都同样被散射。如空气中存在较多的尘埃或雾粒,一定范围的长短波都被同样的散射,使天空呈灰白色的。有时为了区别有选择性的散射和没有选择性的散射,将前者称为散射,后者称为漫射。
2.两个基本离子相碰撞,运动方向改变的现象。
3.在某些情况下,声波投射到不平的分界面或媒质中的微粒上而不同方向传播的现象,也叫乱反射
瑞利散射瑞利,十九世纪最著名的物理学家之一,1842年11月12日出生于英国的莫尔登。据说,瑞利刚开始上学时并不用功,他虽然人很聪明,可却十分贪玩,学习成绩一直平平。10岁那年曾连续两次逃学,为此,他的爸爸妈妈很替他着急,为了孩子的前途,他们决定迁居伦敦。环境的改变,对瑞利的成长起到了良好的作用。另外,瑞利的父母还特地为他聘了一名家庭女教师,从此瑞利一改以前贪玩的习性,一心埋进书本中。
data/attachment/portal/201111/06/093235hzhmabpcapcb1yc2.jpg
散射
瑞利对物理学曾出了很大的贡献,他在声学、波的理论、光学、光的散射、电力学、电磁学、水力学、液体流动理论方面都做出了不可磨灭的贡献,1904年,他因和拉姆塞同时发现了惰性元素氩(Ar)而荣获了该年度的诺贝尔物理学奖。
1871年,瑞利在经过反复研究,反复计算的基础上,提出了著名的瑞利散射公式,当光线入射到不均匀的介质中,如乳状液、胶体溶液等,介质就因折射率不均匀而产生散射光。瑞利研究表明,即使均匀介质,由于介质中分子质点不停的热运动,破坏了分子间固定的位置关系,从而也产生一种分子散射,这就是瑞利散射。瑞利经过计算认为,分子散射光的强度与入射光的频率(或波长)有关,即四次幂的瑞利定律
正午时,太阳直射地球表面,太阳光在穿过大气层时,各种波长的光都要受到空气的散射,其中波长较长的波散射较小,大部分传播到地面上。而波长较短的兰,绿光,受到空气散射较强,天空中的兰色正是这些散射光的颜色,因此天空会呈现蓝色。
正是由于波长较短的光易被散射掉,而波长较长的红光不易被散射,它的穿透能力也比波长短的蓝、绿光强,因此用红光作指示灯,可以让司机在大雾迷漫的天气里容易看清指示灯,防止交通事故的发生。
拉曼散射
data/attachment/portal/201111/06/093235htttuwt4jt58jo87.jpg
散射
拉曼散射(Ramanscattering),光通过介质时由于入射光与分子运动相互作用而引起的频率发生变化的散射。又称拉曼效应。1923年A.G.S.斯梅卡尔从理论上预言了频率发生改变的散射。1928年,印度物理学家C.V.拉曼在气体和液体中观察到散射光频率发生改变的现象。拉曼散射遵守如下规律:散射光中在每条原始入射谱线(频率为v0)两侧对称地伴有频率为v0±vi(i=1,2,3,…)的谱线,长波一侧的谱线称红伴线或斯托克斯线,短波一侧的谱线称紫伴线或反斯托克斯线;频率差vi与入射光频率v0无关,由散射物质的性质决定,每种散射物质都有自己特定的频率差,其中有些与介质的红外吸收频率相一致。拉曼散射的强度比瑞利散射(见光的散射)要弱得多。
以经典理论解释拉曼散射时,认为分子以固有频率vi振动,极化率(见电极化率)也以vi为频率作周期性变化,在频率为v0的入射光作用下,v0与vi两种频率的耦合产生了v0、v0+vi和v0-vi3种频率。频率为v0的光即瑞利散射光,后两种频率对应拉曼散射谱线。拉曼散射的完善解释需用量子力学理论,不仅可解释散射光的频率差,还可解决强度和偏振等一类问题。
拉曼散射为研究晶体或分子的结构提供了重要手段,在光谱学中形成了拉曼光谱学的一分支。用拉曼散射的方法可迅速定出分子振动的固有频率,并可决定分子的对称性、分子内部的作用力等。自激光问世以后,关于激光的拉曼散射的研究得到了迅速发展,强激光引起的非线性效应导致了新的拉曼散射现象。
参考资料
http://blog.163.com/li_gang868@126/blog/static/10414138200821784546770/

0 条回复

暂无讨论,说说你的看法吧!

 回复

你需要  登录  或  注册  后参与讨论!