grxlj ·  2009-02-27 00:14  ·  27782 次点击
data/attachment/portal/201111/06/100351231on7oz3me3nj39.jpg氢
氢是一种化学元素,化学符号为H,原子序数是1,在元素周期表中位于第一位。它的原子是所有原子中最细小的。氢通常的单质形态是氢气。它是无色无味无臭,极易燃烧的双原子的气体,氢气是最轻的气体。它是宇宙中含量最高的物质.氢原子存在于水,所有有机化合物和活生物中.导热能力特别强,跟氧合成水。在0摄氏度和一个大气压下,每升氢气只有0.09克重——仅相当于同体积空气重量的14.5分之一。在常温下,氢比较不活泼,但可用催化剂活化。在高温下氢非常活泼。除稀有气体元素外,几乎所有的元素都能与氢生成化合物。
目录
基本简介
各种数据表
名称由来
分布情况
性质特点
同位素
制备与纯化
用途
历史故事
其它方面
相关词条
相关链接
基本简介
data/attachment/portal/201111/06/1003525a5luql6xlwj8mgu.jpg氢
名称:氢
符号:H
序号:1
系列非金属
族:1族
周期:第一周期
元素分区:s区
密度:0.0899kg/m3
硬度:273K
颜色:外表无色
大气含量:10-4%
地壳含量:0.88%
熔点:259.14°C
沸点:252.8°C
临界温度:33.19K
临界压力:12.98大气压
气体密度:0.0899克/升
水溶解度21.4厘米?/千克水(0°C下)
各种数据表
化学数据表:
原子量1.00794u
原子半径
25.0pm
共价半径37.3pm
范德华半径120.0pm
价电子排布1s1
密度0.084g/L鲍林离子半径208.0pm(-1)电子在每能级的排布1
氧化数
+1(-1)
晶体结构六角形
物理数据表:
核内质子数1核外电子数1核电荷数1质子质量1.673E-27质子相对质量1.007所属周期1所属族数IA,有时单独为氢族摩尔质量1声速1270m/s(293.15K)氢化物无氧化物H2O最高价氧化物H2O物质状态常温下为水
能量表:
熔点13.81K沸点20.28K摩尔体积11.42×10-6m3/mol
汽化热0.44936kJ/mol
熔化热0.05868kJ/mol
蒸气压209帕(23K)电负性2.11的电离能为
1333.5668KJ/mol
比热14304J/(kg·K)
热导率0.1815W/(m·K)
名称由来
data/attachment/portal/201111/06/1003520zzw244amp42nxr6.jpg氢分子
16世纪末期,瑞士化学家巴拉采尔斯把铁放在硫酸中,铁片顿时和硫酸发生激烈的化学反应,放出许多气泡——氢气。但直到1766年,氢才被英国科学家卡文迪许(HenryCavendish)确定为化学元素,当时称为可燃空气,并证明它在空气中燃烧生成水。(一说:1783年)1787年法国化学家拉瓦锡(AntoineLavoisier)证明氢是一种单质并给它命名。
希腊语hud?r(水)gennen(造成),意即“产生水”的物质。中文原称“氢气”为“轻气”,“氢”属尔后新造之形声字。日语循希腊语原义,称为“水素”。
分布情况
在地球上和地球大气中只存在极稀少的游离状态氢。在地壳里,如果按重量计算,氢只占总重量的1%,而如果按原子百分数计算,则占17%。氢在自然界中分布很广,水便是氢的“仓库”——水中含11%的氢;泥土中约有1.5%的氢;石油、天然气、动植物体也含氢。在空气中,氢气倒不多,约占总体积的一千万分之五。在整个宇宙中,按原子百分数来说,氢却是最多的元素。据研究,在太阳的大气中,按原子百分数计算,氢占81.75%。在宇宙空间中,氢原子的数目比其他所有元素原子的总和约大100倍。地壳岩石中分布量1520ppm。
性质特点
氢是元素周期表中的第一号元素,元素名来源于希腊文,原意是“水素”。氢是由英国化学家卡文迪许在1766年发现,称之为可燃空气,并证明它在空气中燃烧生成水。1787年法国化学家拉瓦锡证明氢是一种单质并命名。氢在地壳中的丰度很高,按原子组成占15.4%,但重量仅占1%。在宇宙中,氢是最丰富的元素。在地球上氢主要以化和态存在于水和有机物中。有三种同位素:氕、氘、氚。
氢在通常条件下为无色、无味的气体;气体分子由双原子组成;熔点-259.14°C,沸点-252.8°C,临界温度33.19K,临界压力12.98大气压,气体密度0.0899克/升;水溶解度21.4厘米?/千克水(0°C),稍溶于有机溶剂。
在常温下,氢比较不活泼,但可用合适的催化剂使之活化。在高温下,氢是高度活泼的。除稀有气体元素外,几乎所有的元素都能与氢生成化合物。非金属元素的氢化物通常称为某化氢,如卤化氢、硫化氢等;金属元素的氢化物称为金属氢化物,如氢化锂、氢化钙等。
同位素
data/attachment/portal/201111/06/100353ycy27o209cr9rn2j.jpg氢的同位素
在自然界中存在的同位素有:氕(氢1)、氘(氢2,重氢)、氚(氢3,超重氢),以人工方法合成的同位素有:氢4、氢5、氢6、氢7,氕只同位素-氢,这里是特指的。氢:可以泛指氢这种元素即原子核中只有一个质子的元素,包括氕氘氚;同时也可以指氢气。
前面介绍的是普通的氢,它的原子量是1,它还有两个“能干”的大“哥哥”氘(音刀)和氚(音川)它们的原子量分别是2和3。人们有时候也把它们称为“重氢”和“超重氢”,它们与氧结合生成的水分别叫重水和超重水。
水在地球上的总重大约是140亿亿吨,其中重水还不到万分之二。为了得到一公斤重水就要消耗掉6万度电和一百吨水,这比砂里淘金花的代价要大得多,因而重水的价格要比金子贵。大自然中的重水非常少,而超重水就更加少了,在宽广无际的大海里,连十亿分之一也找不到,只有靠人工的方法去制造。一般是把金属锂放在原子反应堆中,在中子的轰击下,使锂转变为氚,然后与氧化合生成超重水。制造一公斤超重水要消耗近十吨的原子能量,而且生产很慢,一个工厂一年也不过制造几十公斤超重水,所以超重水的价格比重水还要贵上万倍,比金子要贵几十万倍。
表面看来,重水和一般的水没有什么两样。但脾气却大不一样,如果你用重水养金鱼,没多久鱼便死了,用重水浸过的种子不会发芽。重水的“个头”也比水大,一立方米重水比一立方米普通的水要重105.6公斤。普通的水在零度时结冰,在100℃时沸腾;而重水在3.8℃时就变成了冰,人们把它叫做“热冰”。
虽然重水和超重水生产起来要花费很大代价,但人们还是在不断地制造着他们。这是什么缘故呢?原来它们对人类也有很多好处。先说起重水,它有放射性,利用它的这个特性,科学家可以研究某些生物或化学过程的进展情况。比如让病人喝一点含有极少量超重水的茶,半小时后,就可以从尿中检查出放射性,一直到14天以后,放射性才消失,这说明水分在人体中停留的时间是14天。如果要研究某种化学过程中水的来龙去脉,但又不许加入别的东西来破坏化学反应,这时就可以在普通水中加入一些超重水,超重水流到哪儿,哪儿就出现放射性。科学家很容易用探测器测量出它的藏身之处。
重水是原子能工业中的重要角色,它是原子反应堆最好的减速剂和载热剂,用了它之后,就可以大大降低原子燃料的成分。重水还是重要的国防原料,氢弹就是用它来制造的,重氢在极高温度下会产生原子核的聚合反应,发生强烈的爆炸,它的能量相当于几千万吨烈性炸药。一个普通的氢弹就能轻而易举地炸毁一座城市。如果把它爆炸时放出能量全部转换成电能,人类几十年也用不完。
制备与纯化
data/attachment/portal/201111/06/100353vnal2njf0ganvjnb.jpg氢
制备:
工业制法:电解水2H2O=O2↑+2H2↑
实验室制法:锌与稀盐酸反映Zn+2HCl=ZnCl2+H2↑
工业法有电解法、烃裂解法、烃蒸气转化法、炼厂气提取法。
纯化:
随着半导体工业、精细化工和光电、半导体生产工艺需要使用99.999%以上的高纯氢。但是目前工业上各种制氢方法所得到的氢气纯度不高,为满足工业上对各种高纯氢的需求,必须对氢气进行进一步的纯化。氢气的纯化方法大致可分为两类(物理法和化学法),六种方法。
用途
data/attachment/portal/201111/06/100353s3mtzsttjkhuuscm.jpg氢
氢是重要工业原料,如生产合成氨和甲醇,也用来提炼石油,氢化有机物质作为收缩气体,用在氧氢焰熔接器和火箭燃料中。在高温下用氢将金属氧化物还原以制取金属较之其他方法,产品的性质更易控制,同时金属的纯度也高。广泛用于钨、钼、钴、铁等金属粉末和锗、硅的生产。
由于氢气很轻,人们利用它来制作氢气球。氢气与氧气化合时,放出大量的热,被利用来进行切割金属。
利用氢的同位素氘和氚的原子核聚变时产生的能量能生产杀伤和破坏性极强的氢弹,其威力比原子弹大得多。
现在,氢气还作为一种可替代性的未来的清洁能源,用于汽车等的燃料。为此,美国于2002年还提出了“国家氢动力计划”。但是由于技术还不成熟,还没有进行大批的工业化应用。2003年科学家发现,使用氢燃料会使大气层中的氢增加约4~8倍。认为可能会让同温层的上端更冷、云层更多,还会加剧臭氧洞的扩大。但是一些因素也可抵销这种影响,如使用氯氟甲烷的减少、土壤的吸收、以及燃料电池的新技术的开发等。
历史故事
data/attachment/portal/201111/06/100353h2nzmh9zmhhm1d1g.jpg氢气球
早在十六世纪,瑞士的一名医生就发现了氢气。他说:“把铁屑投到硫酸里,就会产生气泡,像旋风一样腾空而起。”他还发现这种气体可以燃烧。然而他是一位著名的医生,病人很多,没有时间去做进一步的研究。
十七世纪时又有一位医生发现了氢气。那时人们的智慧被一种虚假的理论所蒙弊,认为不管什么气体都不能单独存在,既不能收集,也不能进行测量。这位医生认为氢气与空气没有什么不同,很快就放弃了研究。最先把氢气收集起来并进行认真研究的是英国的一位化学家卡文迪什。
卡文迪什非常喜欢化学实验,有一次实验中,他不小心把一个铁片掉进了盐酸中,他正在为自己的粗心而懊恼时,却发现盐酸溶液中有气泡产生,这个情景一下子吸引了他,刚才的气恼心情全没了。他在努力地思考:这种气泡是从哪儿来的呢?它原本是铁片中的呢,还是存在于盐酸中呢?他又做了几次实验,把一定量的锌和铁投到充足的盐酸和稀硫酸中(每次用的硫酸和盐酸的质量是不同的),发现所产生的气体量是固定不变的。这说明这种新的气体的产生与所用酸的种类没有关系,与酸的浓度也没有关系。
卡文迪什用排水法收集了新气体,他发现这种气体不能帮助蜡烛的燃烧,也不能帮助动物的呼吸,如果把它和空气混合在一起,一遇火星就会爆炸。卡文迪什是一位十分认真的化学家,他经过多次实验终于发现了这种新气体与普遍空气混合后发生爆炸的极限。他在论文中写道:如果这种可燃性气体的含量在9.5%以下或65%以上,点火时虽然会燃烧,但不会发出震耳的爆炸声。
随后不久他测出了这种气体的比重,接着又发现这种气体燃烧后的产物是水,无疑这种气体就是氢气了。卡文迪什的研究已经比较细致,他只需对外界宣布他发现了一种氢元素并给它起一个名称就行了,真理的大门就要向他敞开了,幸运之神就要向他微笑了。
但卡文迪什受了虚假的“燃素说”的欺骗,坚持认为水是一种元素,不承认自己无意中发现了一种新元素,真是非常可惜。后来拉瓦锡听到了这件事,他重复了卡文迪什的实验,认为水不是一种元素而是氢和氧的化合物。在1787年,他正式提出“氢”是一种元素,因为氢燃烧后的产物是水,便用拉丁文把它命名为“水的生成者”。
其它方面
·来源与用途
data/attachment/portal/201111/06/1003540ir5is664545jmsr.jpg氢——工业
在宇宙中最丰富的元素,主要和氧结合,以水的形式存在与自然界,也存在于矿井、油和汽井之中。用于生产氨、乙醇、氯化氢、溴化氢、植物油和不饱和烃的氢化,火箭燃料,低温学研究等。
·原子结构
原子半径:0.79、共价半径:0.32、电子构型:1s1、离子半径:0.012、氧化态:Ⅰ
·发现
1766年,在英国伦敦,由H.Cavendish发现。
·物理性质
状态:无味、无色、无臭、极易燃烧的气体。熔点(℃):-258.975、沸点:-252.732摄氏度、密度(g/L/273K,1atm):0.0899、自燃点:500摄氏度。比热14.304/J/gK、蒸发热0.44936/KJ/mol、熔化热0.05868/KJ/mol、闪点253/℃、导热系数:0.001815
·地质数据
太阳:(相对于H=1×1012)
地壳:1520/p.p.m.溶在其中。
大气:0.5/p.p.m.(体积)
·生物数据
人体中含量肝:93000/p.p.m。
器官中肌肉:93000/p.p.m
相关词条
镁无机盐甲醇金刚石脂肪酸胆碱碱碳蔗糖氧气尼古丁水杨酸纤维素氟甲烷烟酸
相关链接
【1】:http://www.pep.com.cn/czhx/ystc/200405/t20040521_85149.htm
【2】:http://www.zdic.net/appendix/law/law_H.htm
【3】:http://www.nahco1.com/

0 条回复

暂无讨论,说说你的看法吧!

 回复

你需要  登录  或  注册  后参与讨论!