光化学

  grxlj ·  2009-03-01 21:55  ·  34035 次点击
研究光与物质相互作用所引起的永久性化学效应的化学分支学科。由于历史的和实验技术方面的原因,光化学所涉及的光的波长范围为100~1000纳米,即由紫外至近红外波段。比紫外波长更短的电磁辐射,如X或γ射线所引起的光电离和有关化学属于辐射化学的范畴。至于远红外或波长更长的电磁波,一般认为其光子能量不足以引起光化学过程,因此不属于光化学的研究范畴。近年来观察到有些化学反应可以由高功率的红外激光所引发,但将其归属于红外激光化学的范畴。
光化学过程是地球上最普遍、最重要的过程之一,绿色植物的光合作用,动物的视觉,涂料与高分子材料的光致变性,以及照相、光刻、有机化学反应的光催化等,无不与光化学过程有关。近年来得到广泛重视的同位素与相似元素的光致分离、光控功能体系的合成与应用等,更体现了光化学是一个极活跃的领域。但从理论与实验技术方面来看,在化学各领域中,光化学还很不成熟。
光化学反应与一般热化学反应相比有许多不同之处,主要表现在:①加热使分子活化时,体系中分子能量的分布服从玻耳兹曼分布;而分子受到光激活时,原则上可以做到选择性激发(能跃值的选择、电子激发态模式的选择等),体系中分子能量的分布属于非平衡分布。所以光化学反应的途径与产物往往和基态热化学反应不同。②只要光的波长适当,能为物质所吸收,即使在很低的温度下,光化学反应仍然可以进行。
电磁辐射能的吸收与分子的激发态光化学的初级过程是分子吸收光子使电子激发,分子由基态提升到激发态。分子中的电子状态、振动与转动状态都是量子化的,即相邻状态间的能量变化是不连续的。因此分子激发时的初始状态与终止状态不同时,所要求的光子能量也是不同的,而且要求二者的能量值尽可能匹配。由于光子的能量ε=hv=hc/λ(式中h为普朗克常数;v为光的频率;λ为光的波长;c为光速),所以能量匹配体现为光的波长的匹配。
分子在一般条件下处于能量较低的稳定状态,称作基态。受到光照射后,如果分子能够吸收分子,就可以提升到能量较高的状态,称作激发态。如果分子可以吸收不同波长的电磁辐射,就可以达到不同的激发态。按其能量的高低,从基态往上依次称做第一激发态、第二激发态等等;而把高于第一激发态的所有激发态统称为高激发态。激发态分子的寿命一般较短,而且激发态越高,其寿命越短,以致于来不及发生化学反应,所以光化学主要与低激发态有关。激发时分子所吸收的电磁辐射能有两条主要的耗散途径:一是和光化学反应的热效应合并;二是通过光物理过程转变成其他形式的能量。光物理过程又可分为:①辐射弛豫过程,即将全部或一部分多余的能量以辐射能的形式耗散掉,分子回到基态,如发射荧光或磷光;②非辐射弛豫过程,多余的能量全部以热的形式耗散掉,分子回到基态(见雅布隆斯基态图解)。
如果分子中的电子是一一配对的(电子自旋方向相反),这种状态在光谱学上称为单重(线)态(在分子式左上角用上标1表示,如1A,或记作S,依能量由低至高分别用S0、S1、…表示)。若分子中有两个电子的自旋平行,这种状态称为三重(线)态(用3A或T1、T2、…表示)。单重态的激发态寿命很短,一般在10-8~10-9秒的量级。当基态为单重态时,激发三重态的寿命一般较长,可达到10-3~100秒的量级。所以有机化合物的光化学大都是三重态的光化学。
分子处于激发态时,由于电子激发可引起分子中价键结合方式的改变〔如电子由成键的π轨道跃迁到反键的π*轨道,记作(π,π*);或由非键的n轨道跃迁到反键的π*轨道,记作(n,π*)等〕,使得激发态分子的几何构型、酸度、颜色、反应活性或反应机理可能和基态时有很大的差别,因此光化学比基态(热)化学更加丰富多采。
量子产率也叫量子效率或量子产额。是光化学重要的基本量之一。设反应为A+hv→B,初级过程的量子产率定义为:
data/attachment/portal/201111/06/101356m0y7yb7fd7mtmb7p.gif
如果激发态的A分子在变成为B的同时,还平行地发生着其他光化学和光物理过程,那么这个初级过程的量子产率将受到其他竞争的平行过程的“量子产率”的影响。由于在一般光强条件下,每个分子只能吸收1个光子,所以所有初级过程的量子产率的总和应等于1。
量子效率的测定有绝对测定法与相对测定法。相对法指与一种其绝对量产率为已知的体系相比较的方法。绝对法则要求直接建立起反应的量子产率和波长、温度、光强以及各种离子(特别是氢离子)浓度间的函数关系。现在已经研究过的这类体系有气体体系(如一氧化二氮、二氧化碳、溴化氢、丙酮等);液相体系(如草酸铁(Ⅲ)钾溶液、草酸铀酰溶液、二苯酮-二苯甲醇、2-己酮、偶氮苯、苯甲酸等〕;固相体系(如硝基苯甲醛、二苯酮-二苯甲醇等)。这些方法所用的仪器统称为化学露光计。
次级步骤如果一个激发态分子不是直接回到它的最低能态,它必须发生以下过程:解离(产生自由电子、原子、自由基或分子碎片);与相邻的同种或不同种分子反应;过渡到一个新的激发态上去。这些过程可以平行地发生,也可以只发生其中的一种或几种,但这些都属于光化学的初级过程。其后的任何步骤均称为次级步骤。例如氧分子光解后生成两个氧原子,是其初级过程;在纯氧中将发生的重要次级过程是氧原子和氧分子结合为臭氧的反应;氧和臭氧在典型的城市大气中又都可以和碳氢化合物进行一系列反应,所有这些反应都可以称为次级步骤。
原子从分子中的一处移向他处的反应称为分子重排反应。许多有机分子在光激发后发生的重排过程也属于次级步骤。如苯经光激发后变为亚甲基环戊二烯的反应:
data/attachment/portal/201111/06/101356t3u0p21234hzi128.gif
第一步只是苯环中6个比较自由的共轭π电子的激发(一般只激发1个电子),这对苯分子中的碳氢键影响不大;而在次级步骤中由于原子的重排,生成了结构完全不同的产物。
有时,初级光化学过程可用作研究次级反应的工具,光敏化反应就属于这类情况。如汞原子能有效地吸收汞灯发射的光而被激发,然后通过与其他分子的碰撞,传递所吸收的能量。例如:
Hg+hv─→Hg*
Hg*+N2O─→Hg+N2+O
氧原子可以和体系中存在的其他物质反应,从释放出来的氮气量可以计算出所产生的氧原子数量。
如果初级光化学步骤是分子光解成两个自由基(有单个或未配对电子的分子碎片),通常,其次级步骤为链反应。氢与氯的反应是已经熟知的例子,其过程为:
hv+Cl2─→2Cl
Cl+H2─→HCl+H
H+Cl2─→HCl+Cl
在链反应中,每个量子可以产生多个产物分子,因此这类反应的总量子产率不仅可能大于1,有时可以达到几百甚至几千。所以当量子产率大于1时,一般可考虑反应具有链反应的机理。
决定一个光化学反应的真正途径往往需要建立若干个对应于不同机理的假想模型,找出各模型体系与浓度、光强及其他有关参量间的动力学方程,然后考察何者与实验结果的相符合程度最高,以决定哪一个是最可能的反应途径。研究反应机理的常用实验方法,除示踪原子标记法外,在光化学中最早采用的猝灭法仍是非常有效的一种方法。这种方法是通过被激发分子所发荧光被其他分子猝灭的动力学测定来研究光化学反应机理的。它可以用来测定分子处于电子激发态时的酸性、分子双聚化的反应速率和能量的长程传递速率。猝灭是一种双分子过程,如原激发分子为A*,猝灭剂分子为Q,此过程为:
A*+Q─→A+Q*
显然猝灭过程也是一种敏化过程。Q可以看成是A*的猝灭剂,也可以把A看成是Q的敏化剂。
应用合成化学中的应用由于吸收给定波长的光子往往是分子中某个基团的性质,所以光化学提供了使分子中某特定位置发生反应的最佳手段,对于那些热化学反应缺乏选择性或反应物可能被破坏的体系更为可贵。光化学反应的另一特点是用光子为试剂,一旦被反应物吸收后,不会在体系中留下其他新的杂质,因而可以看成是“最纯”的试剂。
如果将反应物固定在固体格子中,光化学合成可以在预期的构象(或构型)下发生,这往往是热化学反应难以做到的。例如马来酸与富马酸的二聚体的固态光合成,以及在冠醚和β-环糊精中的光定向合成,都获得成功。
大气中的光化学地球与行星的大气现象,如大气构成、极光、辐射屏蔽和气候等,均和大气的化学组成与对它的辐照情况有关。地球的大气在地表上主要由氮气与氧气组成。但高空处大气的原子与分子组成却很不相同,主要和吸收太阳辐射后的光化学反应有关。大气污染过程包含着极其丰富而复杂的化学过程,目前用来描述这些过程的综合模型包含着许多光化学过程。如棕色二氧化氮在日照下激发成的高能态分子,是氧与碳氢化物链反应的引发剂。又如氟碳化物在高空大气中的光解与臭氧屏蔽层变化的关系等都是以光化学为基础的(见环境光化学)。
参考书目
J.A.巴尔特洛甫、J.D.科伊尔著,宋心琦等译:《光化学原理》,清华大学出版社,北京,1983。(J.A.BarltropandJ.D.Coyle,PrinciplesofPhotochemistry,JohnWiley&Sons,NewYork,1978.)

0 条回复

暂无讨论,说说你的看法吧!

 回复

你需要  登录  或  注册  后参与讨论!