二极管

  grxlj ·  2009-03-02 18:22  ·  28162 次点击
目录
名词解释
晶体二极管
激光二极管
发光二极管
微波二极管
稳压二极管
触发二极管
隧道二极管
光敏二极管
相关条目
名词解释
data/attachment/portal/201111/06/1014395xg0xi09pe5tj0ut.jpg二极管的特性与应用
几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。
二极管的工作原理
晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。
二极管的类型
二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。
二极管的导电特性
二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。
1.正向特性。
在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。
2.反向特性。
在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。
二极管的主要参数
用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。不同类型的二极管有不同的特性参数。对初学者而言,必须了解以下几个主要参数:
1、额定正向工作电流
是指二极管长期连续工作时允许通过的最大正向电流值。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为140左右,锗管为90左右)时,就会使管芯过热而损坏。所以,二极管使用中不要超过二极管额定正向工作电流值。例如,常用的IN4001-4007型锗二极管的额定正向工作电流为1A。
2、最高反向工作电压
加在二极管两端的反向电压高到一定值时,会将管子击穿,失去单向导电能力。为了保证使用安全,规定了最高反向工作电压值。例如,IN4001二极管反向耐压为50V,IN4007反向耐压为1000V。
3、反向电流
反向电流是指二极管在规定的温度和最高反向电压作用下,流过二极管的反向电流。反向电流越小,管子的单方向导电性能越好。值得注意的是反向电流与温度有着密切的关系,大约温度每升高10,反向电流增大一倍。例如2AP1型锗二极管,在25时反向电流若为250uA,温度升高到35,反向电流将上升到500uA,依此类推,在75时,它的反向电流已达8mA,不仅失去了单方向导电特性,还会使管子过热而损坏。又如,2CP10型硅二极管,25时反向电流仅为5uA,温度升高到75时,反向电流也不过160uA。故硅二极管比锗二极管在高温下具有较好的稳定性。
晶体二极管
晶体二极管
crystaldiode
固态电子器件中的半导体两端器件。起源于19世纪末发现的点接触二极管效应,发展于20世纪30年代,主要特征是具有单向导电性,即整流特性。利用不同的半导体材料、掺杂分布、几何结构,可制成不同类型的二极管,用来产生、控制、接收、变换、放大信号和进行能量转换。例如稳压二极管可在电源电路中提供固定偏压和进行过压保护;雪崩二极管作为固体微波功率源,用于小型固体发射机中的发射源;半导体光电二极管能实现光-电能量的转换,可用来探测光辐射信号;半导体发光二极管能实现电-光能量的转换,可用作指示灯、文字-数字显示、光耦合器件、光通信系统光源等;肖特基二极管可用于微波电路中的混频、检波、调制、超高速开关、倍频和低噪声参量放大等。
分类
按用途分:检波二极管、整流二极管、稳压二极管、开关管、光电管。
按结构分:点接触型二极管、面接触型二极管
激光二极管
一、激光的产生机理
data/attachment/portal/201111/06/101440qssmy6mqq476pgmr.jpg
在讲激光产生机理之前,先讲一下受激辐射。在光辐射中存在三种辐射过程,
一时处于高能态的粒子在外来光的激发下向低能态跃迁,称之为自发辐射;
二是处于高能态的粒子在外来光的激发下向低能态跃迁,称之为受激辐射;
三是处于低能态的粒子吸收外来光的能量向高能态跃迁称之为受激吸收。
自发辐射,即使是两个同时从某一高能态向低能态跃迁的粒子,它们发出光的相位、偏振状态、发射方向也可能不同,但受激辐射就不同,当位于高能态的粒子在外来光子的激发下向低能态跃迁,发出在频率、相位、偏振状态等方面与外来光子完全相同的光。在激光器中,发生的辐射就是受激辐射,它发出的激光在频率、相位、偏振状态等方面完全一样。任何的受激发光系统,即有受激辐射,也有受激吸收,只有受激辐射占优势,才能把外来光放大而发出激光。而一般光源中都是受激吸收占优势,只有粒子的平衡态被打破,使高能态的粒子数大于低能态的粒子数(这样情况称为离子数反转),才能发出激光。
产生激光的三个条件是:实现粒子数反转、满足阈值条件和谐振条件。产生光的受激发射的首要条件是粒子数反转,在半导体中就是要把价带内的电子抽运到导带。为了获得离子数反转,通常采用重掺杂的P型和N型材料构成PN结,这样,在外加电压作用下,在结区附近就出现了离子数反转—在高费米能级EFC以下导带中贮存着电子,而在低费米能级EFV以上的价带中贮存着空穴。实现粒子数反转是产生激光的必要条件,但不是充分条件。要产生激光,还要有损耗极小的谐振腔,谐振腔的主要部分是两个互相平行的反射镜,激活物质所发出的受激辐射光在两个反射镜之间来回反射,不断引起新的受激辐射,使其不断被放大。只有受激辐射放大的增益大于激光器内的各种损耗,即满足一定的阈值条件:
P1P2exp(2G-2A)≥1
(P1、P2是两个反射镜的反射率,G是激活介质的增益系数,A是介质的损耗系数,exp为常数),才能输出稳定的激光,另一方面,激光在谐振腔内来回反射,只有这些光束两两之间在输出端的相位差Δф=2qπq=1、2、3、4。。。。时,才能在输出端产生加强干涉,输出稳定激光。设谐振腔的长度为L,激活介质的折射率为N,则
Δф=(2π/λ)2NL=4πN(Lf/c)=2qπ,
上式可化为f=qc/2NL该式称为谐振条件,它表明谐振腔长度L和折射率N确定以后,只有某些特定频率的光才能形成光振荡,输出稳定的激光。这说明谐振腔对输出的激光有一定的选频作用。
二、激光二极管本质上是一个半导体二极管,按照PN结材料是否相同,可以把激光二极管分为同质结、单异质结(SH)、双异质结(DH)和量子阱(QW)激光二极管。量子阱激光二极管具有阈值电流低,输出功率高的优点,是目前市场应用的主流产品。同激光器相比,激光二极管具有效率高、体积小、寿命长的优点,但其输出功率小(一般小于2mW),线性差、单色性不太好,使其在有线电视系统中的应用受到很大限制,不能传输多频道,高性能模拟信号。在双向光接收机的回传模块中,上行发射一般都采用量子阱激光二极管作为光源。
半导体激光二极管的基本结构如图所示,垂直于PN结面的一对平行平面构成法布里——珀罗谐振腔,它们可以是半导体晶体的解理面,也可以是经过抛光的平面。其余两侧面则相对粗糙,用以消除主方向外其它方向的激光作用。
半导体中的光发射通常起因于载流子的复合。当半导体的PN结加有正向电压时,会削弱PN结势垒,迫使电子从N区经PN结注入P区,空穴从P区经过PN结注入N区,这些注入PN结附近的非平衡电子和空穴将会发生复合,从而发射出波长为λ的光子,其公式如下:
λ=hc/Eg(1)
式中:h—普朗克常数;c—光速;Eg—半导体的禁带宽度。
上述由于电子与空穴的自发复合而发光的现象称为自发辐射。当自发辐射所产生的光子通过半导体时,一旦经过已发射的电子—空穴对附近,就能激励二者复合,产生新光子,这种光子诱使已激发的载流子复合而发出新光子现象称为受激辐射。如果注入电流足够大,则会形成和热平衡状态相反的载流子分布,即粒子数反转。当有源层内的载流子在大量反转情况下,少量自发辐射产生的光子由于谐振腔两端面往复反射而产生感应辐射,造成选频谐振正反馈,或者说对某一频率具有增益。当增益大于吸收损耗时,就可从PN结发出具有良好谱线的相干光——激光,这就是激光二极管的简单原理。
随着技术和工艺的发展,目前实际使用的半导体激光二极管具有复杂的多层结构。
常用的激光二极管有两种:①PIN光电二极管。它在收到光功率产生光电流时,会带来量子噪声。②雪崩光电二极管。它能够提供内部放大,比PIN光电二极管的传输距离远,但量子噪声更大。为了获得良好的信噪比,光检测器件后面须连接低噪声预放大器和主放大器。
半导体激光二极管的工作原理,理论上与气体激光器相同。
激光二极管本质上是一个半导体二极管,按照PN结材料是否相同,可以把激光二极管分为同质结、单异质结(SH)、双异质结(DH)和量子阱(QW)激光二极管。量子阱激光二极管具有阈值电流低,输出功率高的优点,是目前市场应用的主流产品。同激光器相比,激光二极管具有效率高、体积小、寿命长的优点,但其输出功率小(一般小于2mW),线性差、单色性不太好,使其在有线电视系统中的应用受到很大限制,不能传输多频道,高性能模拟信号。在双向光接收机的回传模块中,上行发射一般都采用量子阱激光二极管作为光源。
半导体激光二极管的常用参数有:
(1)波长:即激光管工作波长,目前可作光电开关用的激光管波长有635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm等。
(2)阈值电流Ith:即激光管开始产生激光振荡的电流,对一般小功率激光管而言,其值约在数十毫安,具有应变多量子阱结构的激光管阈值电流可低至10mA以下。
(3)工作电流Iop:即激光管达到额定输出功率时的驱动电流,此值对于设计调试激光驱动电路较重要。
(4)垂直发散角θ⊥:激光二极管的发光带在垂直PN结方向张开的角度,一般在15?~40?左右。
(5)水平发散角θ∥:激光二极管的发光带在与PN结平行方向所张开的角度,一般在6?~10?左右。
(6)监控电流Im:即激光管在额定输出功率时,在PIN管上流过的电流。
激光二极管在计算机上的光盘驱动器,激光打印机中的打印头等小功率光电设备中得到了广泛的应用。
发光二极管
data/attachment/portal/201111/06/101441fp6bpuwg6ge587u5.jpg
发光二极管简称为LED。由镓(Ga)与砷(AS)、磷(P)的化合物制成的二极管,当电子与空穴复合时能辐射出可见光,因而可以用来制成发光二极管,在电路及仪器中作为指示灯,或者组成文字或数字显示。磷砷化镓二极管发红光,磷化镓二极管发绿光,碳化硅二极管发黄光。
它是半导体二极管的一种,可以把电能转化成光能;常简写为LED。发光二极管与普通二极管一样是由一个PN结组成,也具有单向导电性。当给发光二极管加上正向电压后,从P区注入到N区的空穴和由N区注入到P区的电子,在PN结附近数微米内分别与N区的电子和P区的空穴复合,产生自发辐射的荧光。不同的半导体材料中电子和空穴所处的能量状态不同。当电子和空穴复合时释放出的能量多少不同,释放出的能量越多,则发出的光的波长越短。常用的是发红光、绿光或黄光的二极管。
发光二极管的反向击穿电压约5伏。它的正向伏安特性曲线很陡,使用时必须串联限流电阻以控制通过管子的电流。限流电阻R可用下式计算:
R=(F-UF)/IF
式中E为电源电压,UF为LED的正向压降,IF为LED的一般工作电流。发光二极管的两根引线中较长的一根为正极,应按电源正极。有的发光二极管的两根引线一样长,但管壳上有一凸起的小舌,靠近小舌的引线是正极。
与小白炽灯泡和氖灯相比,发光二极管的特点是:工作电压很低(有的仅一点几伏);工作电流很小(有的仅零点几毫安即可发光);抗冲击和抗震性能好,可靠性高,寿命长;通过调制通过的电流强弱可以方便地调制发光的强弱。由于有这些特点,发光二极管在一些光电控制设备中用作光源,在许多电子设备中用作信号显示器。把它的管心做成条状,用7条条状的发光管组成7段式半导体数码管(图),每个数码管可显示0~9十个数目字。
微波二极管
工作在微波频段的二极管。属于固体微波器件。微波波段通常指频率从300兆赫到3000吉赫。19世纪末发现了点接触二极管效应后,相继出现了PIN二极管、变容二极管、肖特基二极管、隧道二极管、耿氏二极管等微波二极管。微波二极管的基片材料由锗、硅发展到砷化镓,使微波二极管工作频率不断提高,目前最高频率已达300吉赫。微波二极管具有体积小和可靠性高等优点,用于微波振荡、放大、变频、开关、移相和调制等方面。
稳压二极管
稳压二极管
voltagestabilizingdiode
data/attachment/portal/201111/06/101441fzzrjszqysnyzpkx.jpg
一种用于稳定电压的单PN结二极管。它的伏安特性、电路符号如图所示。结构同整流二极管。加在稳压二极管的反向电压增加到一定数值时,将可能有大量载流子隧穿PN结的位垒,形成大的反向电流,此时电压基本不变,称为隧道击穿。当反向电压比较高时,在位垒区内将可能产生大量载流子,受强电场作用形成大的反向电流,而电压亦基本不变,为雪崩击穿。因此,反向电压临近击穿电压时,反向电流迅速增加,而反向电压几乎不变。这个近似不变的电压称为齐纳电压(隧道击穿)或雪崩电压(雪崩击穿)。
稳压二极管工作于反向击穿状态(图a)。反向电流在-IZK和-IZM之间时,二极管两端的电压基本不变,等于UZ,即为稳定电压。对硅稳压二极管而言,稳定电压在5V以下的器件靠齐纳电压工作,稳定电压在7V以上的器件靠雪崩电压工作,两者之间的器件两种形式的击穿都可能起作用。
电流IZK是器件起稳压作用的最小工作电流,而IZM则是最大可利用的齐纳电流或雪崩电流,其值受稳压二极管耗散功率的限制。IZ是相应于稳定电压UZ的工作电流。最大工作电流的范围从几个毫安到几十安。常用稳压二极管的稳定电压标称值约在2~200V的范围内。
触发二极管
触发二极管
data/attachment/portal/201111/06/101441m8b1js8emgcb1nnc.jpg
触发二极管(DIAC)属三层结构,具有对称性的二端半导体器件。常用来触发双向可控硅,在电路中作过压保护等用途。
图1是它的构造示意图。图2、图3分别是它的符号及等效电路,可等效于基极开路、发射极与集电极对称的NPN型晶体管。因此完全可用二只NPN晶体管如图4连接来替代。
双向触发二极管正、反向伏安特性几乎完全对称(见图5)。当器件两端所加电压U低于正向转折电压V(B0)时,器件呈高阻态。当U>V(B0)时,管子击穿导通进入负阻区。同样当U大于反向转折电压V(BR)时,管子同样能进入负阻区。转折电压的对称性用△V(B)表示。△V(B)=V(B0)-V(BR)。一般△V(B)应小于2伏。双向触发二极管的正向转折电压值一般有三个等级:20-60V、100-150V、200-250V。由于转折电压都大于20V,可以用万用表电阻挡正反向测双向二极管,表针均应不动(RX10k),但还不能完全确定它就是好的。检测它的好坏,并能提供大于250V的直流电压的电源,检测时通过管子的电流不要大于是5mA。用晶体管耐压测试器检测十分方便。如没有,可用兆欧表按图6所示进行测量(正、反各一次),电压大的一次V(BR)。例如:测一只DB3型二极管,第一次为27.5V,反向后再测为28V,则△V(B)=V(B0)-V(BR)=28V-27.5V=0.5V

0 条回复

暂无讨论,说说你的看法吧!

 回复

你需要  登录  或  注册  后参与讨论!