环境分析方法

  liling8262 ·  2010-03-06 12:43  ·  25534 次点击
测定环境污染物的性质、来源、含量和分布状态以及环境背景值的方法。环境分析方法是在应用现代分析化学各个领域的测试技术和手段的基础上发展起来的,要求灵敏、准确、精密,并且具有简便、快速和连续自动等特点。
环境分析方法很多,每种方法都有一定的适用范围和对象。常用的环境分析方法可分为化学分析法、光谱分析法、色谱分析法、电化学分析法四类,每类又可根据所采用的分析原理和仪器分为若干种。
化学分析法分为重量分析法、容量分析法;光谱分析法分为比色分析法、紫外分光光度法、红外分光光度法、原子吸收光谱法、原子发射光谱法、X射线荧光分析法、荧光分析法;色谱分析法分为气相色谱法、高效液相色谱法、薄层色谱法、离子色谱法、色谱-质谱联用技术;电化学分析法分为极谱分析法、电导分析法、电位分析法、库仑分析法。
重量分析法
定量分析中的一种经典方法。18世纪中叶,罗蒙诺索夫首先使用天平称量法,对物质在化学变化中量的改变进行了测定,并证明了质量守恒定律,实际上为定量分析中的重量分析法奠定了基础。重量分析法要求有精密的分析天平,19世纪分析天平称量准确度达0.1毫克;20世纪出现了微量分析天平和超微量分析天平,称重的准确度分别达到0.001和0.0001毫克,扩大了重量分析的应用范围。
重量分析法是准确地称量出一定量试样,然后利用适当的化学反应把其中欲测成分变成纯化合物或单体析出,采用过滤等方法与其他成分分离,经干燥或灼烧后称量,直至恒重,求出欲测成分在试样中所占比例。除了这种直接测定法外,还可采用间接测定法,即将试样中欲测成分挥发掉,求出挥发前后试样重量差,从而求得欲测成分的含量。重量分析法根据所用分析操作的方法分为沉淀法、均相沉淀法、电解法、气体发生(吸收)法和萃取法等。在环境污染物分析中,重量法常用于测定硫酸盐、二氧化硅、残渣、悬浮物、油脂、飘尘和降尘等。重量分析法广泛应用于化学分析。随着称量工具的改进,重量分析法也不断发展,如近年来用压电晶体的微量测重法测定大气飘尘和空气中的汞蒸汽等。
容量分析法
又称滴定法,是一种经典的方法。19世纪初期,L.盖吕萨克提出了气体定律,奠定了气体容量分析方法的理论基础。后来,他把测量气体和液体体积的分析方法应用于实际。容量分析法是利用一种已知浓度的试剂溶液(称为标准溶液)与欲测组分的试液发生化学反应,反应迅速而定量地完成(即达到反应终点)后,根据所用标准溶液的浓度和体积(从滴定管上读取)及其当量关系,算出试液中欲测组分的含量。终点的鉴定除利用指示剂的变色目视鉴定外,还可应用各种仪器的方法来鉴定,如电位滴定法、光度滴定法、高频滴定法、电流滴定法、电导率滴定法、温度滴定法等。近年来在容量分析中已采用各种型式的自动滴定仪。
容量分析的优点是操作简便,迅速、准确,费用低,适用于常规分析。根据所利用的反应种类,容量分析法可分为中和滴定法、氧化还原滴定法、沉淀滴定法、络合滴定法等。在环境污染分析中,容量分析法应用于生化需氧量、溶解氧、化学需氧量等水污染常规分析指标分析,以及挥发酚类、甲醛、氰化物、氟化物、硫化物、六价铬、铜离子、锌离子等污染物的分析。
光谱分析法
光谱可分为吸收光谱和发射光谱。利用光谱学的原理和实验方法以确定物质的结构和化学成分的分析方法称为光谱分析法,包括下述各种方法:
比色分析法
根据试液颜色深浅的程度,把试液与颜色深浅程度不同的已知标准溶液相比较,来确定物质含量的方法。
1729年P.包盖尔提出了包盖尔定律,即组成相同的呈色溶液,如液层厚度相等时,则色的强度相同。1760年J.H.朗伯特提出与包盖尔定律近似的朗伯特定律,即浓度相同的呈色溶液,色的强度与液层的厚度成比例。1852年A.比尔提出了比尔定律,即液层厚度相等时,色的强度与呈色溶液的浓度成比例。这些定律奠定了比色分析法的理论基础。1854年J.迪博塞克和J.奈斯勒等将这些理论应用于定量分析化学领域。1873年C.维洛特首先应用分光光度法以进行光度分析。光度法不像比色法那样比较呈色溶液颜色的强度,而是测定呈色溶液的透光度或吸光度。1874年Н.Г.叶戈罗夫首先将光电效应用于比色分析,他所设计的光电光度计就是现代光电比色计的雏型。1894年出现了浦夫立许光度计;1911年出现了贝尔格光电比色计;1941年出现了贝克曼DU型分光光度计。后来又出现自动记录的分光光度计、示波器分光光度计、双波长分光光度计和数字显示分光光度计等。光度法的灵敏度和准确度不断提高,应用范围也不断扩大。
比色分析法如以肉眼观察比色管来比较溶液颜色的深浅以确定物质含量的,称为目视比色法。利用光电池和电流计来测量通过有色溶液的透射光强度,从而求得被测物质含量的方法叫作光电比色法;所用的仪器称为光电比色计。
分光光度法又称吸收光谱法,是利用单色器(棱镜或光栅)获得单色光(3~5纤米波带的宽度)来测定物质对光吸收能力的方法;所用的仪器称为分光光度计。
比色法和分光光度法以朗伯特-比尔定律(亦称光的吸收定律)为基础,即溶液的吸光度与溶液中有色物质的浓度及液层厚度的乘积成正比例。其数字关系式为lg(Io/I)=K·C·L。式中Io为入射光的强度;I为透射光的强度;L为光线通过有色溶液的液层厚度;C为溶液中有色物质的浓度;K为常数(对于某种有色物质在一定波长的入射光时,K为一定值),称为消光系数(也称吸光系数)。K值的大小随L和C的单位而改变,如果L以厘米表示,C以摩尔/升为单位,则此常数称为摩尔吸光系数(或摩尔消光系数),常以ε表示。
比色分析法的主要优点是准确、灵敏、快速、简便而费用又低。测定物质的最低浓度一般可达每升10-10克,如经化学法富集,灵敏度还可提高2~3个数量级。测定的相对误差通常为1~5%。
比色分析法和分光光度法在环境污染分析中已被普遍采用,但污染物必须先与显色试剂作用转化成有色化合物后才能进行测定。目前已研制出各种效果良好和非常灵敏的有机显色剂。金属离子、非金属离子和有机污染物均可用这种方法测定。
紫外分光光度法
利用化学物质在紫外光区的吸收与紫外光波长间的函数关系而建立起来的分析方法。紫外光谱的波长范围可分为近紫外区(200~400纤米)和远紫外区(10~200纤米),前者常用于化学分析,后者因空气吸收波长在200纤米以下的紫外线,测量须在真空中进行,所以在分析上较少应用。
分子吸收紫外辐射常是其外层电子或价电子被激发的结果。电子愈易激发,则吸收峰的波长就愈长。
紫外分光光度计一般用氢灯做辐射源,用石英棱镜或光栅做单色器,用光电倍增管做检测器。吸收池的材料一般为石英或硅石,长度为1~10厘米。若用氘代替氢,其发射强度在紫外区短波长处可增加三倍。
简单的无机离子和它的络合物以及有机分子,可在紫外光谱区进行检定和测量。有效的溶剂有水、饱和碳氢化合物、脂族醇和醚。能吸收紫外辐射的有机化合物至少要含有一个不饱和键,如C=C,C=O,N=N以及S=O,以起发色团的作用。吸收峰的波长随着发色团的不饱和程度的增大而增长。一些化合物及其最大吸收波长如右表所示。
紫外分光光度法在环境污染分析方面的应用主要有以下几方面:①在大气污染分析中真空紫外线气体分析仪已应用于分析汽车废气;紫外气体分析仪可应用于分析臭氧、二氧化氮、氯气。气态氨在190~230纤米波长上有几条强烈的吸收带,可用于直接测定氨气的浓度。②某些多环芳烃和苯并(a)芘在紫外区有强吸收峰,常用此法测定。③某些含有共轭体系的油品在紫外光区具有特征吸收峰,故可用此法测定油类污染。④此法还可用于测定食物、饮料、香烟、水质、生物、土壤等试样中可能含有的致癌物质,以及残留农药、硝酸盐和酚等。⑤此法也可与色谱分析联用,待测试样先经色谱柱,然后让色谱柱洗脱液流经紫外分光光度计的吸收槽以检测试样所含的痕量污染物。近年来迅速发展起来的高速液相色谱仪均配备有紫外检测器。
红外分光光度法
也叫红外光谱分析法,是一种仪器分析方法。物质在红外光照射下,只能吸收与其分子振动、转动频率相一致的红外光线,因此不同物质只能吸收一定波长的入射光而形成各自特征的红外光谱,而对一定波长红外线吸收的强弱则与物质的浓度有关。根据这一原理可进行物质定性、定量分析及复杂分子的结构研究。
在环境分析化学中,红外分光光度法主要用于450~1000厘米-1红外区有吸收的气体、液体和固体污染物。在测定大气污染时,采用多次反射长光程吸收池和傅里叶变换红外光谱仪,可测ppm至ppb级浓度的易挥发性气体(乙炔、胺、乙烯、甲醛、氯化氢、硫化氢、甲烷、丙烯、苯、光气等)。在大气中发现的一种新化合物过氧乙酰硝酸酯,就是经过红外光谱法和质谱法的鉴别后确定的。用红外光谱法还发现了美国洛杉矶空气中有臭氧存在。用傅里叶变换红外光谱可测定水中浓度在1ppb以下的有机污染物和农药。与质谱法相比,红外光谱法可以很容易地区分污染物的各种异构体。红外光谱法是鉴别水中石油污染的主要方法之一。红外光谱法可用于大气污染化学反应的测定。气相色谱-红外光谱联用技术可以测定低沸点、易挥发的有机污染物。由于利用了气相色谱的分辨能力,突破了红外光谱法原来只适用于纯化合物的限制,因此气相色谱-红外光谱联用也能应用于混合物的测定。
原子吸收光谱法
利用元素的原子蒸汽(火焰或石墨炉产生)吸收锐线光源(空心阴极灯或无极放电灯)的光进行定量分析的方法。主要优点:①选择性好,干扰少,在分析复杂环境样品时容易得到可靠的分析数据。②仪器操作简便,费用较低。③灵敏度高,可用于微量样品分析。用火焰原子吸收法可测定样品含量至毫克每升级,用石墨炉法可测至微克每升级,灵敏度高于高频耦合等离子体法。④测定含量范围广,既能进行痕量元素分析,又能测定基体元素的含量。稳定的原子吸收分光光度计,其准确度能达到0.1~0.3%,可与经典容量法相比拟。
原子吸收光谱法加测汞和氢化物发生器等附件,测定灵敏度可比石墨炉更高,汞、砷、硒、碲、铋、锑、锗锡、铅的测定范围可提高1~2个数量级。原子吸收光谱法已广泛用于测定水、飘尘、土壤、粮食以及各种生物样品中的重金属元素。用原子吸收光谱法测定的元素已达七十多种。原子吸收光谱法中以火焰法比较成熟,使用最多,但对于环境样品,分析灵敏度还不够高。石墨炉法虽不够成熟,却是一种灵敏度很高的分析手段。
原子吸收光谱法的缺点是:①测定每种元素都要更换专用的灯,不能同时作多元素分析。②各种干扰作用比高频耦合等离子体法更大。③对共振线位于真空紫外区的元素测定有困难。④对固体样品的测定比较困难。⑤对某些高温元素如铀、钍、锆、铪、铌、钽、钨、铍、硼等的测定灵敏度太低。
原子发射光谱法
利用原子蒸汽在电或热的激发下产生的光谱,通过光谱仪照相记录或光量计直接读数的定量分析方法。主要特点是能一次同时测定多种金属元素,选择性好,干扰少,能直接分析液体和固体样品,适合于定性和多种元素定量分析。分析范围液体为毫克/升到微克/升,固体分析灵敏度为1%至0.001%。采用化学分离富集后再行测定,可提高灵敏度1~2个数量级。在环境保护中可用于分析水、飘尘、土壤、粮食以及各种生物样品等。缺点是要用照相干板记录,分析周期长;对于超痕量元素的定量分析,灵敏度不够;直接分析固体样品时,误差较大。
传统的发射光谱分析,是用溶液干渣法分析溶液,碳槽粉末法分析固体;以交流电弧或直接电弧作为激发光源;使用中型石英光谱仪或光栅光谱仪,照相干板记录。基体影响将使分析误差加大。最近,在溶液干渣法中引入锂盐为缓冲剂,使基体影响减少,分析准确度大大提高,因而发射光谱法在一定程度上成为一种通用的定量分析方法。碳槽粉末法由于工作曲线斜率低,误差大,还未能成为通用的定量分析方法。
近年来,发展了直流和高频耦合等离子体光源,结合使用光电记录,提高了分析的精度、灵敏度和速度,减少了基体效应,有较好的再现性,较宽的线性动态范围,并可同时测定多种元素,是一种新的分析手段。但高频耦合等离子体为光源的仪器价格昂贵,氩气消耗量大,分析成本高,对于环境样品的分析灵敏度不够。直流等离子体光源的灵敏度虽不及高频耦合等离子体光源,但仪器价格低,氩气消耗小,对人体健康影响小,所以近年来发展很快。
X射线荧光分析法
X射线荧光分析的基本原理是以高能X射线(一次X射线)轰击样品,将待测元素原子内壳层的电子逐出,使原子处于受激状态,10-12~10-15秒后,原子内的原子重新配位,内层电子的空位由较外层的电子补充,同时放射出特征X射线(二次X射线)。特征X射线波长λ和原子序数Z有一定关系:λ∝1/Z2。测定这些特征谱线的波长或能量可作定性分析;测量谱线的强度,可求得该元素的含量。
X射线荧光分析法所用的激发源有X射线管、放射性同位素、电子、质子或α粒子等。测定方法有波长色散法和能量色散法两种。波长色散法是一种经典方法。能量色散法采用Si(或Li)半导体探测器和多道分析器,可同时测定钠以上的全部元素,它的分辨率比波长色散法低些,但能适用于多元素分析。
X射线荧光分析法具有快速、准确、测定范围宽、能同时测定多种元素、自动化程度较高和不破坏样品等优点,故已广泛地应用于环境污染监测。如测定大气飘尘中痕量金属化合物;借助电子计算机,自动监测大气飘尘以及大气中二氧化硫和气溶胶吸附的硫,也适用于测定各种水体悬浮粒子中的重金属以及溶解于水中的痕量元素。
荧光分析法
物质吸收了某一波段的光线(激发光)后,引起能级跃迁,发出波长比激发光的波长稍长些的光线,这种光线称为荧光。测量荧光光谱特性及其强度以确定该物质及其含量的方法,称为荧光分析法。如被测样品的浓度很低,其荧光强度便与物质的浓度成正比,根据这种特性,可以进行物质的定量分析;不同物质具有不同的荧光激发光谱和发射光谱,根据光谱的特性可以进行物质的定性分析。特别是荧光分光光度计能得到两种光谱(激发光谱和发射光谱),用这两种光谱图鉴定物质,比使用吸收光谱法更为可靠。
荧光分析所用的仪器有目测荧光计、光电荧光计和荧光分光光度计等。每种仪器均由光源、滤光片或单色器、液槽和探测器等部件组成。
荧光分析法的灵敏度很高,比一般的分光光度法高2~3个数量级,能检测10-11~10-12克的痕量物质。荧光分析法还具有实验方法简便、取样容易、试样用量少等优点,因而是一种重要的分析技术。目前用荧光分析法测定的元素已达60多种,化合物数百种。在环境污染分析中,荧光分析法已被广泛地应用于测定致癌物和其他毒物,如苯并(a)芘等多环芳烃、β-萘胺、黄曲霉毒素、农药、矿物油、硫化物、硒、硼、铍、铀、钍等。
色谱分析法
原为一种经典的分析方法。这种方法的工作原理是:不同的物质在不相混溶的两相──固定相和流动相中有不同的分配系数。当两相作相对运动时,物质随流动相运动,并在两相间进行反复多次的分配而达到分离。此法在技术上经过不断的发展,能使分离的组分通过各种检测器进行连续测定,从而形成现代色谱的各种分离分析方法,包括气相色谱、液相色谱等等。此法具有高效分离、灵敏、快速等特点,所以是检测环境样品中微量或痕量已知污染物的有效方法。常用的色谱分析法有:
气相色谱法(GC)
以气体为流动相的色谱法,根据固定相的状态又分为气固色谱法和气液色谱法。前者用分子筛、硅胶、活性炭、高分子多孔微球等做固定相,适于分析化学性质稳定的气体及C1-C4烃类气体;后者用蒸汽压低、热稳定性好,在操作温度下呈液态的有机化合物做为固定液,涂敷在惰性载体上或毛细管内壁上作为固定相。气相色谱法的特点为:①分离效率高和选择性好。一般填充柱每米有数千个理论塔板,毛细管柱则可达105~106个,因此适于分析复杂的多组分环境样品。②灵敏度高。GC有许多高灵敏度的检测器,如氢火焰离子化检测器(FID)、电子捕获检测器(ECD)、火焰光度检测器(FPD)等,可检出低达10-11~10-13克的样品组分,适合于环境样品中痕量毒物的测定。③分析速度快。一个分析周期通常只需几分钟至几十分钟。④应用范围广。可用以分析气体、易挥发的液体或固体以及其他经衍生作用而转化为易挥发化合物的物质。如用GC-ECD方法可连续测得各种环境介质中含量低至ppb级的有机氯农药DDT、六六六的八种异构体和降解产物。有机磷农药如乐果、马拉硫磷、对硫磷等,用FPD检测也可达ppb级。气相色谱法也是分离测定多氯联苯、多环芳烃、苯胺类、氯苯类等有机毒物,以及大气污染物如硫氧化物、氮氧化物、一氧化碳等气体常用的有效方法。对于无机化合物可先转化成挥发性化合物再用GC测定,如铍、铬等有毒元素转化为三氟乙酰丙酮螯合物,用GC-ECD可测定低至10-13克。采用将硒转化为硒二唑类化合物的方法,适用于各种环境样品中痕量硒的测定。铅、砷、汞、硒、锡等元素的毒性同它们存在的价态和形态有关。为了解这些元素在环境中的迁移转化,采用气相色谱-原子吸收联用法(GC-AAS)分离测定它们的烷基化合物是较新的有效手段。
高效液相色谱法(HPLC)
经典的液相色谱法是以重力流动的液体为流动相,因而分离速度很慢;由于色谱柱填充物粒度较大,分离效率不高,并缺乏专用的检测装置,使应用受到限制。在现代气相色谱技术的影响下,液相色谱法的流动相输液系统和色谱柱的填充材料都有了改革,于70年代形成了高效液相色谱法。其特点为:①分离效率高。使用新型填充物,粒度可小于50微米,每米柱的塔板数达5000以上。②分离速度快。采用高压输液泵,流动相压力高达300千克力/厘米2以上,流速远比经典液相色谱法为快,分离速度可与气相色谱法相比。③灵敏度高。流出液流经紫外或荧光等检测器,可直接检出低至10-10~10-13克的物质。④可以测定高沸点、热不稳定等不宜于用气相色谱法测定的大分子量的化合物。环境中的一些致癌物质如黄曲霉毒素、多环芳烃以及除莠剂、杀虫剂等都可以用HPLC进行快速、灵敏的分析测定。大气飘尘的多环芳烃从两环的萘至五环的苯并(a)芘等10多种化合物,在半小时内便可分离测定。应用紫外检测器可以检知含量为纤克/米3级的多环芳烃。
薄层色谱法(TLC)
薄层色谱法是将载体均匀地涂布在玻璃板上,所得的薄层板作为固定相,样品点在板上,放入密封槽中,用溶剂(流动相)展开,从而分离样品的各组分。TLC的分离效果优于纸色谱法,展开的时间短。由于斑点集中及薄层板的容量大,所以灵敏度提高很多。早先的薄层分析是先将斑点取下,洗脱后用合适的方法测定,或直接用光密度计测量斑点,操作费时,误差大,灵敏度也不高。近来发展的薄层扫描仪,能够直接进行定性、定量测定,效果较好。薄层色谱法适合于大分子量有机化合物的分离测定。用薄层色谱法结合薄层扫描仪可以分离测定多环芳烃、多氯联苯、亚硝胺、农药、黄曲霉毒素等,灵敏度可达ppb级。薄层色谱法近年来在高效分离方面也有进展。高效薄层色谱法(HPTLC)是用更细颗粒的硅胶(5~10微米)制作薄层板,使展开距离短,重现性好,灵敏度更高,可达纤克至沙克级水平。
离子色谱法(IC)
是在离子交换色谱法基础上新近发展起来的一种方法。离子交换色谱法是以离子交换剂为固定相的色谱法,由于交换剂对流动相中不同离子的交换能力不同,经过多次反复的交换平衡可使各种离子分离。早期是在分别收集洗脱液后,用其他分析方法分别进行定量测定。70年代以来,采用了高压输液技术,提高了分离速度,联接库仑仪可同时测定多种无机离子,这种方法称为高压离子交换色谱法。1975年斯莫尔等人采用了通用而灵敏的电导检测器,并在离子交换柱后接一抑制柱以消除洗脱液的电导率,从而能在低背景下测定微量离子的电导率。对于目前用原子吸收分光光度法、电化学法及其他分析方法不易测定的一些阴离子,如卤素离子、硫酸根、亚硝酸根、硝酸根、磷酸根等以及胺、钙、镁、铵等阳离子,IC显示了独特的优越性,并有以离子色谱仪为名的商品出售,而称此法为离子色谱法。其特点为:①快速。可以在15分钟内分离测定水样中氟、氯、溴、碘离子、硝酸根、亚硝酸根、磷酸根、硫酸根等。②灵敏度高。可以检出ppm和ppb含量的离子。③高效分离。可以连续测定多组分。此法在环境分析中用于测定大气、水、降水、土壤、工业废气、废水中的阴离子颇为方便。此外,还用于测定汽车废气中的氨和胺,气溶胶中的硫酸根、硝酸根,锅炉水中的氯离子、硫酸根、亚硫酸根和磷酸根等。
气相色谱-质谱联用技术(GC-MS)
由气相色谱仪与质谱仪结合使用的一种新型完整的分析技术,可进行复杂混合化合物的定性定量分析。通常还配备电子计算机,以构成气相色谱-质谱-计算机系统。气相色谱仪与质谱仪的结合,中间大多要经过一界面装置(分子分离器),解决色谱柱出口(通常为常压)与质谱仪离子源(真空度为10-4~10-7)之间的压降过渡的问题;分子分离器还能对进入质谱仪的色谱馏分起到浓缩作用。但毛细管柱色谱仪与质谱仪的结合也有采取不经分子分离器的直接耦合方式。一般采用的分子分离器有喷嘴、多孔玻璃、多孔银、多孔不锈钢、聚四氟乙稀毛细管、硅橡胶隔膜、导通率可变的狭缝、涂有硅酮的银-钯合金管、膜片-多孔银等类型。试样馏分随载气进入分子分离器时,由于馏分分子量与载气分子量相差较大,空间扩散能力不同,从而在大抽速泵的抽力下大部分载气与试样馏分在分子分离器里得到分离。典型的双喷嘴式分子分离器见图3,气相色谱-质谱联用装置。

0 条回复

暂无讨论,说说你的看法吧!

 回复

你需要  登录  或  注册  后参与讨论!