椭偏仪
Aluhao · 2010-08-06 23:19 · 40594 次点击
应用
光谱型椭偏仪是一种用于探测波膜厚度、光学常数以及材料微结构的光学测量设备。由于与样品非接触,对样品没有破坏且不需要真空,使得椭偏仪成为一种极具吸引力的测量设备。
椭偏仪可测的材料包括:
半导体、电介质、聚合物、有机物、金属、多层膜物质…
涉及领域有:
半导体、通讯、数据存储、光学镀膜、平板显示器、科研、生物、医药…
发展历史
早期的研究主要集中于偏振光及偏振光与材料相互作用的物理学研究以及仪器的光学研究。计算机的发展使椭偏仪在更多的领域得到应用。硬件的自动化和软件的成熟大大提高了运算的速度,成熟的软件提供了解决问题的新方法,因此,椭偏仪现在已被广泛应用于研究、开发和制造过程中。
光谱范围
早些年,椭偏仪的工作波长为单波长或少数独立的波长,最典型的是采用激光或对电弧等强光谱光进行滤光产生的单色光源。现在大多数的椭偏仪在很宽的波长范围内以多波长工作(通常有几百个波长,接近连续)。和单波长的椭偏仪相比,多波长光谱椭偏仪有下面的优点:可以提升多层探测能力,可以测试物质对不同波长光波的折射率等。
椭偏仪的光谱范围在深紫外的142nm到红外33µm可选。光谱范围的选择取决于被测材料的属性、薄膜厚度及关心的光谱段等因素。例如,掺杂浓度对材料红外光学属性有很大的影响,因此需要能测量红外波段的椭偏仪;薄膜的厚度测量需要光能穿透这薄膜,到达基底,然后并被探测器检测到,因此需要选用该待测材料透明或部分透明的光谱段;对于厚的薄膜选取长波长更有利于测量。
椭偏仪如何工作?
下图给出了椭偏仪的基本光学物理结构。已知入射光的偏振态,偏振光在样品表面被反射,测量得到反射光偏振态(幅度和相位),计算或拟合出材料的属性。
入射光束(线偏振光)的电场可以在两个垂直平面上分解为矢量元。P平面包含入射光和出射光,s平面则是与这个平面垂直。类似的,反射光或透射光是典型的椭圆偏振光,因此仪器被称为椭偏仪。关于偏振光的详细描述可以参考其他文献。在物理学上,偏振态的变化可以用复数ρ来表示:
其中,ψ和分别描述振幅和相位。P平面和s平面上的Fresnel反射系数分别用复函数rp和rs来表示。rp和rs的数学表达式可以用Maxwell方程在不同材料边界上的电磁辐射推到得到。
其中