传感器故障诊断

  Baike ·  2011-12-07 17:05  ·  12842 次点击
传感器故障诊断的实施,能够保证诊断系统获取实时准确的信息,避免因错误信息造成的负效应,保证数据的正确性,因此传感器故障诊断是系统实时避障的重要保证。应用在机器人避障系统传感器故障诊断的方法主要有以下几个方面:
(1)模糊诊断方法
模糊诊断方法就是以模糊数学为理论基础,依据系统的传感器的模糊状态进行状态识别、推理并作出决策的一种故障诊断方法。
模糊故障诊断方法的优点是能够充分利用专家经验,考虑了故障状态及专家经验的模糊性,使得诊断结果更为合理,同时模糊诊断计算量相对较小,诊断速度快,实时性好,便于在计算机上应用,且准确率也较高。经常被国内外学者应用到机器人避障系统中,进行传感器输出结果的诊断。但模糊故障诊断方法也有其不完善的方面,如隶属函数的选取、各个诊断规则的运用,至今并无同一原则,常依具体问题而定。
(2)离散小波网络法
离散小波网络法是利用小波网络来诊断避障系统中传感器对象,当传感器对象没有突变时,小波网络的输出与诊断避障系统中传感器对象的输出差值较小,当传感器有突变时,小波网络的输出与诊断避障系统中传感器对象的输出差值较大,据此可利用方差检测出故障。该方法灵活度高,克服噪声能力强,对输入信号要求低,不需要对象的数学模型。缺点:在大尺度下,由于滤波器时域宽度较大,检测时会有一定的延时。
(3)人工神经网络诊断法
人工神经网络法近年来被应用于机器人避障系统中的传感器故障诊断领域。人工神经网络是一种并行处理机制的网络,且它可以通过学习而获得外界知识,知识分布存储各个神经元之间连接权值上,它可以完成输入模式到输出模式的复杂映射,具有容错能力强和运行速度快的特点。
采用神经网络法进行机器人避障系统的故障诊断的方法是①选择系统中关键传感器输出作为神经网络的输入变量,并规定网络的输出变量值;②选择合适类型和结构的神经网络;③根据所选择的输入输出信号的历史数据,离线对网络进行训练,获得网络的权值或阀值;④在线将前面选择的输入输出数据作用于网络,网络输出便可给出诊断结果。
该方法优点是不需要准确的数学模型,可以直接用过程数据来解决机器人避障系统故障诊断问题。但是此方法还存在一些问题,如网络结构如何选取等。此外,在诊断过程中,常常自学习,自诊断,因此如何将无导师训练算法引入到传感器故障诊断领域,也是一直探讨的方向。

0 条回复

暂无讨论,说说你的看法吧!

 回复

你需要  登录  或  注册  后参与讨论!