我国南海首次发现裸露“可燃冰” 自主研发的分析仪器功不可没
XZKL1234 · 2017-09-27 08:26 · 69959 次点击
中科院海洋研究所的“科学”号考察船执行中科院海洋先导专项期间,通过其配备的“发现”号无人潜水器携带自主研发的RiP拉曼光谱探针,在我国南海海域首次发现了裸露在海底的天然气水合物,并证实其为标准的I型水合物。昨日,这一成果在国际权威学术期刊《地球化学、地球物理学、地球系统学》在线发表,标志着其获得了国际权威认可。
我们的星球超过一半的区域被2000米以上的深海海水所覆盖。深海海底不但蕴藏着丰富的石油、天然气、天然气水合物、金属结核、热液和硫化物等矿产资源,还存在着极端生命现象(深海生物基因资源),这些资源具有重大的经济和战略价值。随着陆地能源的日趋紧张,深海探测与资源开发技术在海洋环境研究和深海资源的开发进程中发挥了不可替代的作用。可以说,谁先掌握了深海调查探测与资源开发的先进技术,谁就掌握了世纪海洋战略发展的主动权。
从19世纪末英国“挑战者号”第一次实现环球海洋科学考察以来,深海一直是国际海洋科学研究的前沿和孕育重大科学发现的摇篮。特别是第二次世界大战以后,以美国为代表的世界强国高度重视“蓝海战略”,极大增加了对深海研究的投入。
受制于深海探测装备的落后,我国在深海探索与研究中长期处于“望洋兴叹”地步,与海洋大国地位不符。
2000年以前我国主要是围绕地质构造和海底矿产资源开展了部分勘查工作。进入21世纪以来,随着我国国力的增强,深海研究也逐步实现由单一资源调查(多金属结核)向探测与科学研究相结合的综合科学考察的战略性转变。2005年我国首次在西南印度洋发现热液喷口,2007年证实了天然气水合物在南海的大量存在并进而启动“南海深部过程演变计划”,以及后续启动的“973”计划“西南印度洋洋中脊热液成矿过程与硫化物矿区预测”、“典型弧后盆地热液活动及其成矿机理”等,推动了我国深海研究的发展。而“蛟龙”号7000m载人深潜器的研制成功,标志着我国在深海研究方面的实力提升。特别是,随着“科学”号海洋综合考察船的投入使用和中科院A类战略性先导科技专项“热带西太平洋海洋系统物质能量交换及其影响”的实施,实现了我国深海大洋科考能力跨越式发展。
据中科院海洋所研究员张鑫介绍,此次重要发现就是自2013年我国启动中科院战略性先导科技专项“热带西太平洋关键区域海洋系统物质能量交换”五年以来,在深海冷泉和可燃冰原位探查方面积累的丰富经验和成果的集中体现。
天然气水合物俗称“可燃冰”,一般分布在深海沉积物或者大陆永久冻土中,而裸露在海底表面的可燃冰需要大量的深海冷泉流体作为气源,因此极难存在,在全球也鲜有报道。
2014年—2015年,利用长基线水下定位技术和深海超高清视频技术,我国科研人员在南海圈定了裸露在海底的疑似可燃冰精确水下位置,但苦于没有相关的原位探测技术,无法验证此猜想。2015年—2016年,我国科研人员自主研发了世界首台可以直接插入高温热液喷口(450℃)进行原位探测的系列化RiP拉曼光谱探针,成为我国南海海域首次发现了裸露在海底的天然气水合物发现的主要高技术手段。“有了这枚探针,我们无须取样,直接让‘发现’号水下机器人带着探针下海,就可以当场进行化学成分分析,探测出可燃冰。”
2016年9月,张鑫作为首席科学家,带领科考队员在我国南海约水深1100米处发现了两个站点存在裸露于海底的可燃冰,一个站点分布在冷泉化能极端生物群落中,成为这些生物的能量源,另一个站点位于一个活动的冷泉喷口内壁。而且,科研人员在国际上首次使用原位拉曼光谱数据,证实快速生成的可燃冰并非单一的笼型结构,其内部存在大量的甲烷、硫化氢等自由气体。
原位拉曼分析是一种原位或远程分析样品的方法,无需把样品提取出来,也不需要把样品带到拉曼光谱仪所在现场。据了解,远程原位拉曼常常通过光纤来实现,由光纤把拉曼探头耦合到拉曼光谱仪上(可以距离分析点几百米远)。一束光纤用于把激光传输到样品上,另一束光纤则把样品的拉曼信号传到标准的拉曼光谱仪和探测系统。两束光纤都连接到一个小巧紧凑的拉曼探头上,探头把激光聚焦到样品上,并收集拉曼信号。
此次深海探测“可燃冰”使用的拉曼光谱原位定量探测系统(RiP系统)由中科院海洋所自主研制,依托深海ROV平台开展近海底原位探测,在突破激光拉曼光谱仪及探针等关键器件技术攻关后,进行了系统轻型化改造和双控制系统的升级。RIP系统采用的拉曼光谱具有非接触、无损并且可多组分同时探测的优点,尤其适用于深海热液喷口、海底冷泉等极端环境下的原位物质成分探测与分析。
再探海斗深渊,屡破世界纪录。我国南海“可燃冰’的探测发现证实,海斗深渊不再是中国科学家的禁区,中国科学家有能力在这一世界前沿科学领域开创性地开展科研工作,为人类科技进步作出应有贡献。