测序王国里的新“王牌”——纳米孔技术有望颠覆DNA测序市场

  XZKL1234 ·  2017-11-17 15:31  ·  58551 次点击
ScottTighe(左)利用MinION设备在南极测序微生物DNA。图片来源:SarahJohnson
ChristopherMason有一个喜欢在会议上展示的技巧。通过从志愿者手机上收集的化验样本获取DNA,他和同事能在1个小时内现场进行谱系分析,甚至详细描述出捐赠者一天的生活细节。“我们能从手机上的残留物预言谁刚吃了一个橘子或者谁吃了猪肉。”美国纽约威尔康奈尔医学院计算生物学家Mason表示。
他利用一种由英国牛津纳米孔技术公司(ONT)研发、名为MinION的手持测序设备实现了这种快速分析。MinION会让DNA长链穿过被称为纳米孔的小孔,探测由DNA的4个核苷酸组件引发的电流微小变化,从而阅读序列信息。Mason的展示是对该设备性能的轻松说明,而早期用户却积累了一些引人注目的科学成就。MinION在监控2015年埃博拉病毒暴发上扮演了举足轻重的角色,并乘船到达过南极甚至进入了太空轨道。
不过,大小和一副扑克牌相当的MinION仅在全球测序市场上占据了一小部分份额。这个市场仍由位于加州圣地亚哥的启迪公司主导。虽然启迪领先了近10年,但ONT及其用户正在努力克服技术挑战——最突出的挑战是较高的出错率。与此同时,竞争的企业希望对这种概念上很简单但技术上很复杂的测序策略稍加创新,从而超越ONT。
在传染病研究人员中最受欢迎
事实证明,MinION在传染病研究人员中尤其受欢迎。例如,伯明翰大学微生物基因学家、MinION早期采用者NicholasLoman同全球病毒“热点区域”的同行合作,共同监控埃博拉在西非以及寨卡在巴西的传播。“他们基本上能在48小时内建立一个测序实验室使其运行,并且可以把设备打包到携带的行李箱里。”加州大学生物物理学家MarkAkeson表示。Akeson开展了纳米孔测序法方面的一些基础性研究,并且是ONT咨询委员会成员。Loman表示,这种可携带性是一种巨大的优势,但大量的数据输出可能会难以掌控。“我们在巴西几乎要成功了,但因为设备过热,我的苹果电脑崩溃了。”
一些团队正在探寻临床微生物学应用。澳大利亚昆士兰大学生物信息学家LachlanCoin开发了实时数据分析算法,以便检测血液样本中的耐药细菌。在利用培养细菌开展的早期测试中,Coin团队能在10个小时内辨别出一个样本中的所有抗药基因。Coin介绍说,现在的技术能让这一时间减半,但利用真实样本(人类DNA会将细菌DNA淹没)的做法正令这一过程复杂化。“我认为,再过1年左右,我们将能在6个小时内辨别出病人样本中的抗药基因。”
其他研究人员正在探寻宏基因组学,目标是全面描述样本中的所有生物体。原则上,流动细胞中的每个纳米孔都能被用于同时检测不同的基因组。“你可以获得存在的任何物种——细菌、病毒和人类DNA的完整基因图谱。”Mason介绍说。他利用纳米孔测序对因肮脏出名的纽约地铁系统开展了宏基因组学调查,并且雄心勃勃地计划对更加荒凉的环境——包括火星进行分析。Mason同美国宇航局的科学家合作证实,MinION在国际空间站零重力条件下表现良好。他和同事希望,有一天能将该技术用于研究火星,并且为正在进行的寻找地外生命提供帮助。
回到地球,佛蒙特大学遗传学家ScottTighe在南极麦克默多干河谷运行了MinION。在那里,他的团队用了两个多小时对微生物样本进行了测序。“设备停止运行的原因在于外面太冷了:电池到最后没电了。”同Tighe就若干项目有过合作的Mason解释说。
瞄准哺乳动物基因组
诸如美国国家人类基因组研究所所长AdamPhillippy等纳米孔方面的资深专家将微生物基因组组装视为“一个已经解决的问题”。如今,他们有了更高远的目标:含有数十亿个而非几百万个核苷酸的哺乳动物基因组。今年,一个包括Phillippy、Loman和加拿大安大略癌症研究所生物信息学家Simpson在内的研究团队报告称,他们仅利用达到很高准确度的MinION数据便组装了完整的人类基因组。Simpson介绍说,平均的重叠群大小达到百万碱基级别,精度值最高为99.44%。搭配使用启迪公司的短序列技术,该团队将准确度提升至99.96%,尽管这仍落后于99.99%的金标准准确度。
不过,在人类基因组分析的其他方面,纳米孔要更加擅长。例如,目前的人类基因组组装仍不完整,因为高度重复的区域对短序列分析“并不感冒”。一个由加州大学基因组学研究人员KarenMiga领导的团队证实,纳米孔能帮助研究人员填补这些空白。Miga团队利用150千碱基对序列重构了人类着丝点,即真核生物染色体上高度重复的基因组。对该领域的研究此前一片空白。同Miga开展合作的Akeson预测,离组装出真正完整的基因组序列可能仅有几年时间。
纳米孔分析还非常适合绘制外基因标记——对单个核苷酸进行的微小化学修饰,会影响基因表达。大多数测序平台利用的是清除这些标记的样品制备方法,但纳米孔平台可直接分析修饰的DNA。Simpson和来自约翰斯?霍普金斯大学的WinstonTimp证实,他们能训练软件区分甲基化胞苷酸和正常胞嘧啶的电信号,准确度约为90%。Akeson也实现了类似的成功。“我们能探测到任何试图看到的修饰。”Akeson表示,“它甚至能区分两个氢原子之间的差别。”
更多期待
不过,一些用户发现,纳米孔样本准备工具具有不可预知性。例如,一些DNA样本需要广泛的优化。“一些人做得非常好并且获得了惊人的成果,但其他人仍在挣扎。”位于马萨诸塞州的药物研发公司WarpDriveBio首席科学家KeithRobison表示。在去年12月的一次演讲中,ONT首席科技官CliveBrown宣称:“公司正在投入很多努力,为人们提供针对特定样本类型的调试协议,从而帮助他们优化获得的样本。”
诸多问题为竞争者带来了机遇。跟得最紧的是位于瑞士的罗氏公司。2014年,该公司并购了总部位于加州的纳米孔初创企业——珍妮亚技术公司。虽然罗氏公司对它的系统秘而不宣,但珍妮亚公司在2016年公开的一份文件中描述了“通过合成开展纳米孔测序”的策略。该技术将DNA合成酶同蛋白纳米孔配对。这种酶会读取目标DNA,并且利用带有化学标签的核苷酸建立互补序列。在每个碱基被包括进不断延长的DNA链时,它的标签被释放并穿过纳米孔,从而产生不同的电信号。
不过,ONT并未止步不前。和此前的模型相比,其两个最新的桌上型系统能传送大很多的数据量。在今年3月发布的GridION基本上可并行运行多个MinION设备。相比之下,PromethION利用的是一种完全不同的流动细胞,并且面向的是人类基因组规模的项目。“很明显,他们想让该系统在输出量方面同启迪公司的平台相媲美。”Loman表示。
虽然该领域取得了很多进展,但不容否认,纳米孔测序占据了支配地位。其低成本、可靠测序的前景令研究人员兴奋不已。“作为计算机科学家,我总是非常渴望数据。”Phillippy表示,“所有微生物学实验室和大学课堂都能产生测序数据的想法非常诱人。”

0 条回复

暂无讨论,说说你的看法吧!

 回复

你需要  登录  或  注册  后参与讨论!