α、β风险说明

  云天 ·  2009-04-22 23:33  ·  14953 次点击
应用控制图时可能发生两种类型的错误,也即存在两类风险。
α风险:即误判的风险,即第一种错误,也称作第一类错误。这是当所涉及的过程仍然处于受控状态,但有某点由于偶然原因落在控制限之外,而得出过程失控的结论时所发生的错误。
此类错误将导致对本不存在的问题而去无谓寻找原因而增加费用。
β风险:即误判的风险,即第二种错误,也称作第二类错误。当所涉及的过程失控,但所产生的点由于偶然原因仍落在控制限之内,而得出过程仍处受控状态的错误结论。此时由于未检测出不合格品的增加而造成损失。第二类错误的风险是以下三项因素的函数:控制限的间隔宽度、过程失控的程度以及子组大小。上述三项因素的性质决定了对于第二类错误的风险大小只能作出一般估计。
常规控制图仅考虑了第一类错误,对于3s控制限而言,发生这类错误的可能性为0.3%。由于在给定情形下,对于第二类错误的损失作出有意义的估计通常是不实际的,而且任意选择一个较小的子组大小(例如4或5)也很方便,故采用3s控制限,并将注意力集中于控制和改进过程本身的性能,是适宜且可行的。
当过程处于统计控制状态时,控制图提供了一种连续检验统计原假设的方法,该统计原假设为过程未发生变化并保持于统计控制状态。由于通常不预先确定过程特性对于有关目标值的具体偏离情况,加之第二类错误的风险,以及未根据满足适当的风险水平来确定子组大小等原因,故常规控制图不应在假设检验的意义上加以研究(参见ISO7966和GB/T17989)。常规控制图强调的是控制图用于识别偏离过程“受控状态"的经验有效性,而非强调其概率解释.某些使用者确实在认真研究控制图的操作特性曲线,将其作为一种手段进行假设检验解释。
当一个描点值落在任一控制限之外,或一系列描点值反映出如第7章中所述的异常模式,则统计控制状态不再被接受。此情形一旦发生,就应开始进行调研以确定可查明原因,过程可能被终止或进行调整。一旦可查明原因被确认并消除,则过程恢复受控状态,随时可以继续。如上所述,对于第一类错误,在极少的情况下,可能找不到可查明原因,于是必须作出结论:虽然过程处于受控状态,但是某个偶然原因造成了描点落在控制界限之外,这表明一种非常罕见的事件发生了。
当为某过程最初建立控制图时,常常会发现此过程当时未处于受控状态。根据这种失控过程的数据计算出的控制限将会导致错误的结论,因为这些控制限的间距太大。为此,在固定的控制图参数建立之前,总是有必要将过程调整到统计控制状态。

2 条回复

eric1103  2009-06-03 13:28
不錯的論點.THANKS
kaixin  2009-05-01 12:17
在SPC实施过程中,对与α、β风险,必须有所了解,楼主的资料给我们提了个醒。
控制线是用来判断正常波动和异常波动的一个临界值,所以减少α必增加β,反之亦然。只有在选择+/-3Sigma为控制线时,误判率最低(α=0.27%),即在1000个产品中允许存在3个不合格品。实际运用表明,在大多数场合使用是适当的、合理的。

 回复

你需要  登录  或  注册  后参与讨论!