测量误差
xzzgjxmf · 2010-05-27 15:39 · 32097 次点击
测量误差按其对测量结果影响的性质,可分为:
一.系统误差(systemerror)
1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均相同或按一定的规律变化,这种误差称为系统误差。
2.特点:具有积累性,对测量结果的影响大,但可通过一般的改正或用一定的观测方法加以消除。
二.偶然误差(accidenterror)
1.定义:在相同观测条件下,对某量进行一系列观测,如误差出现符号和大小均不一定,这种误差称为偶然误差。但具有一定的统计规律。
2.特点:
(1)具有一定的范围。
(2)绝对值小的误差出现概率大。
(3)绝对值相等的正、负误差出现的概率相同。
(4)数学期限望等于零。即:
误差概率分布曲线呈正态分布,偶然误差要通过的一定的数学方法(测量平差)来处理。
此外,在测量工作中还要注意避免粗差(grosserror)(即:错误)的出现。
§2衡量精度的指标
测量上常见的精度指标有:中误差、相对误差、极限误差。
一.中误差
方差
——某量的真误差,[]——求和符号。
规律:标准差估值(中误差m)绝对值愈小,观测精度愈高。
在测量中,n为有限值,计算中误差m的方法,有:
1.用真误差(trueerror)来确定中误差——适用于观测量真值已知时。
真误差Δ——观测值与其真值之差,有:
标准差
中误差(标准差估值),n为观测值个数。
2.用改正数来确定中误差(白塞尔公式)——适用于观测量真值未知时。
V——最或是值与观测值之差。一般为算术平均值与观测值之差,即有:
二.相对误差
1.相对中误差=
2.往返测较差率K=
三.极限误差(容许误差)
常以两倍或三倍中误差作为偶然误差的容许值。即:。
§3误差传播定律
一.误差传播定律
设、…为相互独立的直接观测量,有函数
,则有:
二.权(weight)的概念
1.定义:设非等精度观测值的中误差分别为m1、m2、…mn,则有:
权其中,为任意大小的常数。
当权等于1时,称为单位权,其对应的中误差称为单位权中误差(unitweightmeansquareerror)m0,故有:。
2.规律:权与中误差的平方成反比,故观测值精度愈高,其权愈大。
绝对误差=|示值-标准值|(即测量值与真实值之差的绝对值)
相对误差=|示值-标准值|/真实值(即绝对误差所占真实值的百分比)
另外还有:
系统误差:就是由量具,工具,夹具等所引起的误差。
偶然误差:就是由操作者的操作所引起的(或外界因素所引起的)偶然发生的误差。