磁电系仪表的温度误差及其补偿技术
Aaron · 2011-01-15 09:33 · 32708 次点击
温度误差产生的原因
1.游丝弹性改变
环境温度变化时,会引起游丝的弹性发生变化。当温度升高时,产生反作用力矩的游丝以及弹片的弹性将减弱,当温度升高10℃时,弹性将减弱0.3%-0.4%,仪表读数偏快,呈现正的附加误差。
2.永久磁铁的磁性改变
当温度变化时,产生固定磁场永久磁铁的磁性变化,磁性温度系数是一个负值,也就是说,温度每升高10℃,永久磁铁的磁性将减弱0.2%-0.3%,仪表读数出现负的附加误差。
3.存在电阻温度系数
由铜或铝线绕成的可动线圈电阻、弹性零件的电阻以及线路部分的电阻会随着温度的变化而变化,因此带来一定的附加误差。
4.综合误差分析
当温度变化时,仪表弹性零件的变化与永久磁铁磁性减弱所引起的附加误差符号相反,可互相抵消一部分但并不能完全抵消,温度每升高10℃,减弱大约0.1%-0.2%。对于铜或铝线绕成的可动线圈,温度每升高10℃,电阻值相应变化4%,对低量程的电压表和具有分流电阻的电流表,会引起较大的温度误差。在测量线路内必须采取相应的补偿措施。
温度误差补偿措施
1.磁路补偿法
温度升高时,磁场变弱,可在仪表系统中采用特殊材料制成磁分路器,如采用铜镍合金或铁镍合金,当温度升高时,磁分路的作用减弱,当温度降低时,磁分路的作用增强,从而补偿由于温度变化而引起的永久磁铁磁性的变化,提高仪表线性特性和精度。
2.双金属片调节法
当温度变化时,游丝的张力发生变化,致使反作用力矩变化,起到温度补偿的作用。
3.负温度系数器件补偿法
有些元件具有负的温度系数,且灵敏度较高,如热敏电阻等,其电阻温度系数比铜和铝的温度系数大得多,采用负温度系数器件补偿温度误差,线路简单,并且与桥路补偿法相比,可以使得电流表的内阻减小。需要指出的是,由于热敏电阻具有非线性特性,可采取并联适当的金属类电阻来补偿非线性误差。