高温工况下仪表阀门设计注意事项

  Van ·  2011-01-24 09:02  ·  21936 次点击
仪表阀门塑变是指一种金属表面被其它材料擦伤,粘结在一起或表面滚成球形。它和温度、材料、表面光洁度、硬度、载荷有关,并受到流体的影响,高温会使金属软化或退火,增加其塑便和擦伤趋势。
塑变和擦伤会引起:(1)卡住阀门(2)损坏密封面(3)增加摩擦力,引起阀芯定位不准。
管线流体中,如果夹有较大较硬的颗粒会把阀内件磨得粗糙不平,易产生塑变和擦伤。冲击振动会造成零件承受冲击表面、配合表面的破坏,有时也会引起塑变和擦伤。
液体金属,例如钠、钾,能够去除金属表面的氧化膜,在温度≥204℃(400℉)时,极易产生擦伤且比较严重,应仔细选择材料,避免擦伤的发生。
防止金属表面的塑变和擦伤的方法主要有:
(1)零件采用硬度较高材料制成。
(2)选用低塑变、低擦伤的配对材料,见表3。
(3)对于相互配合的两种零件,采用不同的材料制造。
(4)在选用配合零件的材料时,保证配合零件材料的硬度上有5~10Rc的硬度差。
(5)确定合理零件表面粗糙度和硬度,或者在零件表面采用特殊的覆盖层,保证配合运动面的硬度差。
(6)确定合理的载荷,根据载荷选用合理的材料及强度。
(7)设计时,应根据高温下不同材料的膨胀系数认真计算膨胀量,从而确定配合零件的尺寸,保证阀内件工作时一个适当的操作间隙。
(8)在投入使用前,将阀门在低载荷及带润滑下试运行(磨合)。表3下列金属配对具有低塑变、低擦伤趋势
二、阀门零、部件的间隙和散热
高温阀门设计中,必须仔细考虑不同零、部件的热膨胀对阀内件动作的影响。当高温流体流过阀门时,由于阀座的质量较小,温度上升很快,阀体的线膨胀系数往往小于阀座的线膨胀系数,所以阀体限制了阀座的径向膨胀,阀座只能向内径膨胀,使得在高温下,阀芯、阀座的工作间隙,小于常温下标准阀门设计的间隙,造成阀内件卡死。阀芯导向杆与导向套也会产生同样的现象。因此,阀门在高温下使用时,常温下标准阀门的设计间隙(包括阀芯、阀座间,导向套、阀杆间)应当适当增加,这样使其在高温下工作也不会发生卡死现象。
对泄漏量要求较高的场合下阀体和阀座尽量采用相同的合金钢制造,并采用单座或笼式结构,尽量避免采用双座阀结构,并在密封面进行硬化处理,以免在高温下,阀门泄漏量大幅度增加。
设计在高温介质场合使用的阀门,还应考虑阀体、阀盖及连接件工作在高温下,材料承受由于高温带来的附加载荷,包括材料热膨胀、蠕变等产生的附加载荷,避免由于附加载荷造成的破坏。
温度的循环变化会使阀座和导向套松动,因此必须采用密封焊和搭接焊来防松,阀座垫片的密封是在密封力大于垫片的屈服极限才能够获得,而在高温、高压及热循环工况下,密封材料发生蠕变而产生渗漏,可采用整体阀座,由阀体上直接制成阀座并使之硬化,对于大口径阀门,采用在阀体上焊接阀座的方法,去除垫片,避免不必要的泄漏。
根据介质的温度高低,还要考虑填料函中填料可承受的温度及执行机构可承受的温度。
阀内件、填料函结构和使用温度之间的关系
450℉(232℃)以上,上阀盖延伸,用较长的阀盖阀杆散热片保持填料密封。
600℉(316℃)以上,间隙加大阀芯、阀座密封部分硬化处理。
750℉(399℃)以上,所有螺纹连接的阀座将会泄漏,必须施加密封焊,防止松动。
900℉(428℃)以上,所有导向套、阀芯导向和导向杆须表面硬化处理,导向套搭接焊。
1050℉(566℃)以上,表面硬化,采用整体阀座、导向套。
三、高温周期性变化工况下密封结构:
用于高温周期性变化的阀座密封面结构如图1。
对于温度周期变化的阀座密封面结构可采用图示柔性阀座唇部结构,该结构用于零件膨胀造成密封线不圆及阀座的磨损有自动对中和补偿作用,在高温且温度循环变化的情况下,有良好的密封效果。其密封是依靠柔性阀座密封部位的弹性变形实现的。

0 条回复

暂无讨论,说说你的看法吧!

 回复

你需要  登录  或  注册  后参与讨论!