反射光学元件助力多光谱成像系统

  Alu ·  2011-04-03 07:24  ·  39094 次点击
传统的光学系统设计通常利用透镜的折射特性,但是对于需要在广泛的激光波长范围内实现多光谱成像的应用,基于透镜的系统就明显无法胜任了。相比之下,反射光学系统不但能够解决大功率多光谱传输,而且还能有效降低系统复杂度,节约成本。
在激光聚焦和多光谱成像应用中,折射式镜头的面型设计面临着两大主要挑战:挑战之一是散射,事实上这也是每种介质的固有特性,波长决定了光束通过镜头的速度。散射导致不同波长的光线在聚焦时,焦点位置会有差异。复合镜头可以解决这个问题——通过选择各种不同的材料做成镜头,由于每种材料都具有不同的光学特性,因此彼此之间可以互相平衡散射。
然而,这种方法只能工作在有限的波段,通常是工作在一些特殊波段,如可见光波段、近红外波段以及短波红外波段(SWIR)等。带宽越宽,需要的元件就越多。这种折射方法除了需要花费更多的时间和成本外,其光学透射范围也会受到各种镜片的化学性质和固有特性的限制。
因此,这便导致了折射系统的第二个缺点:吸收。在大功率激光聚焦系统中,即使是很小一部分的光能量被吸收,就可能导致镜头严重损坏。传统的解决方案是选择镜头材料以及镀膜,以提高对应激光波长处的透射率。
不幸的是,当同时需要多谱成像和大功率激光器时,这两种解决方案并不能互相补足。在折射系统中,由于波段变宽,镀膜所能够达到的高透射率性能大大降低。因此对于一个传统的镜头系统来说,要么需要限制光谱范围,要么限制激光功率,这两者不能同时满足。
多透镜需求
突显这种困境的潜在成本的一种应用是:在生产过程中检测和修理平板显示。用可见光扫描整个平板表面,以找出缺陷,一旦缺陷被识别出来,高功率激光束(通常由1064nm的Nd:YAG激光器输出)就会对准缺陷部位进行融化。对于服务于该应用的单独光学系统,其必须在红外波段和可见光波段有着很高的透射率。而且,系统必须要将红外光和可见光聚焦在相同点,这样才能保证激光束能够可靠地投射到缺陷处。
即便是能够找到合适的材料在如此宽泛的波段都能提供优良的透射性能,如此复杂且要求苛刻的光学系统也会非常昂贵。因此,已经实施的解决方案就是使用两组复合物镜。第一组复合物镜用于可见光扫描,通常结合氦氖激光器光斑通过系统透射用于准直目的。当氦氖激光光斑指向缺陷部位时,透镜系统的电动控制台就会移动到此处,然后用近红外光来代替可见光路并进行激光去除。
因为需要多重镜头组、电动调整台等,因此这种方案不但成本高昂,而且维修费用也非常高。近红外镜头与可见光镜头不能够同时聚焦在相同的平面,因此系统的准直非常重要,以确保激光烧蚀正常工作。
如果采用反射光学系统,则只需要几个光学元件就能满足该应用需求,因为反射系统不受波长约束。反射系统不会产生散射;聚焦只与几何面型有关系,因此不需要用多种元件进行校正。反射光路通过系统(取决于反射镜的反射率)与波长有关,但是波长对其产生的影响并不大。金属反射膜的光谱范围有10μm、20μm等,不同的材料有着不同的反射率,从而允许反射镜处理从紫外(150nm)到短波红外(20μm)波段的光。如果需要极高的反射率以避免激光内部热源的影响,则需要特殊的激光膜层,以提高激光波长处的反射率,同时在其余波段不会对系统的性能产生影响。
典型的反射系统只有几个光学元件:一个主镜用来聚焦,一个二级反射镜将光路进行转折到更有利的位置。二级反射镜由一个“三脚架”固定,并用一个镜筒来固定整个光学系统(见图1)。由于这种反射系统简化了光路,因此与折射系统相比,能够大幅缩减成本,而且可以使结构变得更加紧凑,更加牢固,这是因为通过反射镜的反射,系统的光轴发生变化,从而减少了系统的长度。
[attach]45429[/attach]
图1:仅采用两个反射镜就能够进行广域光谱成像,同时没有色差例如,在面板检测以及维修时,反射系统的优点能够得到很好的体现:只需要一个镜头就能够代替折射系统的两个镜头,不需要安装电动移位台器件,体积得到进一步缩小,降低了成本,并能够提高产能,因为在使用时不再需要转换物镜。这种简化版的光学设计同时意味着系统调整变得更加简单,比折射系统的投资回报率高出了许多。
设计考量
在多光谱应用中,反射光学系统比折射光学系统更易于设计和实施;然而,在选择反射式物镜时必须要考虑以下一些因素:第一就是选择固定的系统还是可以调整的系统。固定版物镜在工厂生产的时候就已调整到最佳状态,这种版本即使在震动以及意外碰撞下也不需要重新校准(见图2)。而且,由于固定版物镜安装要比可调整版更结实可靠,即使从适当的位置跌落或掉落也不会影响其使用。
[attach]45430[/attach]
图2:固定版反射式物镜用于调焦,大功率蓝色激光束应用于生物医疗方面能简化系统、
使得系统更牢固、更紧凑固定版镜头非常适用于环境恶劣的工业应用,在安装时不需要调整。为了详细说明这种物镜,开发人员必须知道变化距离——要么无穷远或特殊的管长,以及盖玻片厚度。一旦布置好后,以后就不需要再进行调整了。
调整版反射物镜可通过一个或两个参数来调整:镜筒长度可调,或校正由于盖玻片的厚度变化而导致的球差(见图3)。通常只有镜头本身发生改变时才进行调整,但是,当主镜和附镜之间的距离发生变化时,也需要进行调整。厂商通常在出货前会将光学性能调整到最佳状态,带调整说明以及特殊部位说明,比如调整图片。使用者可将其安装在系统中,可通过镜筒长度和盖玻片厚度进行调整,然后固定。
[attach]45431[/attach]
图3:可调整式反射物镜能使开发应用人员通过调整光路来满足特殊需求当调整型镜头需要定期调整时,其可通过多重结构来调整,功能多样。这种镜头为现货供应,比如可与小于典型值长度的镜筒和盖玻片厚度配套使用,不需要添加其他配件及额外费用就能够满足用户的特殊需求。
无论是固定版还是调整版,在购买反射式物镜时都需要注意一些关键点。其中最主要的是二级反射镜以及三角座为成像带来的阴影尺寸。二级反射镜布局在主光路上,将不可避免地阻挡一部分光束通过系统,降低光束质量。三角座的三个腿可导致衍射效应,采用四脚直行设计时情况更为严重。四腿对称设计各个脚都会导致衍射效应,而且会相互叠加。三腿弯曲设计会避免上述缺陷,使光能透射更加均匀。
在使用反射物镜时,另外一个需要考虑的因素是激光功率。这种反射物镜采用标准金属膜层,应用范围广,但却并不是大功率输出激光器的最佳选择。在与高功率激光配套使用时,需要考虑膜层的损伤阈值。有些厂商可以根据用户的要求定制。
反射式物镜可用于多种应用领域,如激光退火或钻孔,可将可见光波长与红外功率传输两者相结合。使用一套光学系统就可测量波长为190nm到1μm薄膜的厚度。只要在传感器的响应范围之内,成像系统可涵盖各种波长范围而不需要添加任何光学元件。

0 条回复

暂无讨论,说说你的看法吧!

 回复

你需要  登录  或  注册  后参与讨论!