焊接缺陷的超声C扫描成像
仪器信息网 · 2011-04-06 00:16 · 15170 次点击
摘要:应用宽视场脉冲超声显微镜(WFPSAM)对所制备的典型焊接缺陷试样进行C扫描成像试验。结果表明:利用超声显微镜的C扫描功能,可以获得焊接缺陷在不同深度层面上的二维声学图象。从所显示的二维图象上可以直观地看到在一定深度层面上焊接缺陷的形状、位置、分布及取向。根据缺陷图象和所选择的扫描参数可以得到缺陷在层面各个方向上的尺寸,包括长度、宽度及单个分散缺陷的大小,密集缺陷的分布范围等。利用计算机图象处理技术或几何作图法将不同深度层面上的C扫描图象进行叠加,便可以得到试样的三维声学图象,从而可以得到缺陷的立体图象、三维尺寸和空间分布,为焊接结构安全评定中的断裂力学计算提供了准确的依据。
关键词:超声C扫描成像;焊接缺陷;宽视场脉冲超声显微镜;安全评定
1试验设备与试验方法
利用时间门电路技术可以区分和获得样品内不同深度z处的反射回波信号。SAM通常有以下三种工作模式:1.内部成像:显示器上呈现出内部不同深度z处的声学图像。2.表层、亚表层成像:此时声透镜的理想焦点在样品的内部。样品的反射信号由入射纵波的反射波和透镜边缘区的入射波在样品表面形成泄漏表面波的再辐射波两部分相干叠加而成,此时可从样品表面反射波中获取表层和亚表层的结构信息。3.z轴扫描工作状态和V(z)曲线,由表层成像工作可知,表面反射信号由两个分量组成。当声聚焦透镜在同一试样中沿垂直于表面的z方向扫描时所得输出电压信号V随z的变化称之为V(z)函数。V(z)函数具有瑞利波半波长的周期性振荡。不同材料的V(z)曲线不同,V(z)函数可作为材料的声学特性,因此,也称为材料的声学指纹。
超声显微镜(SAM)是以现代微波声学、信号检测和计算机科学为基础研制成功的可以无损、精密地观察物体内部结构三维图像的新型声学设备。声波具有良好的穿透性,易于穿透不透明的物体,形成声显微反差的机理是被测样品微观声学参数或力学参数的差异与分布。因而SAM能够得到不透明物体内部的声学或力学参数像,从而可以得到物体表面和内部结构的三维图像和大量信息[1,2]。目前应用比较成功的是在生物医学工程中对活体组织和细胞的研究,在微电子工程中对集成电路内部结构的分析与研究。国内外已开始有人将SAM应用于材料科学中陶瓷材料的研究。但目前国内外文献中应用超声显微镜进行焊接缺陷的检测与研究尚未见报道[3,4,5,6]。本文就是试图将超声显微镜应用于焊接缺陷的检测与研究,利用超声显微镜的C扫描功能获得焊接缺陷的超声层析成像,进而获得焊接缺陷的具体形状和精确尺寸,这就为重要焊接结构的安全评定,寿命评估和临界断裂应力计算等提供了准确的依据。
1.1试验设备
采用俄罗斯科学院研制的宽视场脉冲扫描声学显微镜WFPSAM(WideFieldPulseScanningAcousticMicroscope)。其结构原理方框图见图1a。它由电路、声路、机械系统和微机四部分组成,其中核心部分是声学系统,见图1b。
[attach]46701[/attach]
图1宽视场脉冲扫描声学显微镜(WFPSAM)结构原理与声学系统示意图WFPSAM的工作原理:压电换能器(常用氧化锌薄膜)在高频电信号的激励下产生频率f=10~103MHz的超声波,通过声聚焦透镜在耦合介质(水)中会聚,会聚声束遇试样表面发生折射,声束在试样内进一步会聚聚焦,最终在一定深度z处聚成焦点。焦点形状并非几何上的点,而是聚焦成一个沿纵深方向的纺锤形狭窄区域。该区域横向尺寸越小,声学显微镜的横向分辨率越高,它取决于超声换能器的工作频率。纵向尺寸与声透镜的凹面曲率半径有关,它直接涉及声学显微镜的纵向分辨率及探测深度。聚焦声束在机械扫描装置的带动下在样品内部扫描,如遇到缺陷或声学特性不均匀介质时,便会在界面上产生反射。反射波返回换能器转换成电信号,经信号处理后在显示器上呈现出反映介质声学不均匀性的图像。
由于超声波在介质中的传播满足波动方程,在界面上的反射和折射服从Snell定律,由衍射理论可得到反射式SAM的成像方程为[1,7]:
[attach]46702[/attach]式中Ud——样品的象函数,决定显示器上样品声学图像各点的灰度或色彩
h——成像系统的点扩散函数取决于超声透镜结构和工作频率
R——样品的反射系数
M——图像的几何放大倍数xd=Mxs,yd=Mys
x0,y0——焦平面坐标
xs,ys——样品上声束通过点的坐标
xd,yd——显示器上与xs,ys对应点的坐标
1.2试验样品
样品制备选用厚度T=6mm及T=8mm的Q235B钢板,下料尺寸均为320mm×100mm。以特殊(非正常)工艺和材料由手工电弧焊制作典型焊接缺陷试板,焊后以X射线照相进行筛选并确认典型缺陷的存在。对筛选出的典型焊接缺陷试板作A型超声波检测,以射线、超声两种方法共同确定缺陷在试板中位置。所制备的典型焊接缺陷试板共有四块:1.气孔试板:T=8mm,焊缝内部存在单个分散的大气孔及直径较小的密集气孔。2.夹渣试板:T=8mm,焊缝内部存在块状、条状及分散点状夹渣。3.未焊透试板:T=6mm,在焊缝根部存在断续未焊透。4.裂纹试板:试板焊缝内存在纵向裂纹一处。
WFPSAM可容许试样的最大尺寸为100mm×150mm×250mm,扫描范围为100mm×100mm,为满足试样扫描要求将焊接缺陷试板切割为包括焊接缺陷在内的100mm×100mm的典型焊接缺陷试样。由于SAM在表层、亚表层成像时,样品表面粗糙度对图像质量有较大影响,而在内部成像时表面粗糙度对图像质量影响不大。研究表明[8],在所选用的f=25MHz工作频率下,表面粗糙度Ra小于1/25波长时,表面粗糙度对图像质量的影响较小,可以忽略不计。钢中纵波声速为CL=5900m/s,当f=25MHz时波长λ=CL/f=236μm,λ/25=9.44μm。为保证试验的成功,对全部试样的探测面进行了粗磨处理,磨平了加强高,并使表面粗糙度达到Ra≤6.3μm。
1.3试验方法
WFPSAM可以实现A、B、C三种扫描方式。
A型显示是脉冲显示,与A型仪器显示波形相同。
B型显示为试样纵剖面即与扫描声束平行截面上的声学图像显示。聚焦声束沿试样表面的一条直线扫描,荧光屏上显示沿扫描线垂直于试样表面的截面上的声学图像。
C型显示为试样内部与样品表面平行,垂直于扫描声束,但深度不同的横截面上的声学图像。为此聚焦声束需作二维扫描,扫描轨迹可有许多形式,通常用矩形栅格扫描方式。改变电子闸门的延迟时间就可得到不同深度的C扫描图像。
为了探索WFPSAM在焊接缺陷检测中能获得的信息,作者利用它的C扫描功能,对所制备的焊接缺陷试样进行了逐层C扫描成像。
利用WFPSAM的C扫描功能将声透镜聚焦焦点和时间门电路的接收信号调整到试样内部深度z处,选择合适的扫描步长,由机械扫描机构带动声透镜在试样表面上沿x和y两个方向对深度为z的层面进行扫描,从而获得焊接缺陷试样在深度为z的层面上的C扫描图像。在WFPSAM的计算机内存储图像或用照相机记录图像,记录扫描步长与扫描范围。测量并记录显示图像尺寸,测量缺陷的图像尺寸,计算缺陷的实际尺寸,为记录方便和明确,规定沿显示图像水平方向的扫描方向为x方向沿显示图像的垂直方向为y方向。
2试验结果与分析
2.1焊接缺陷试样的C扫描图像
由于篇幅的限制,每种焊接缺陷选择两幅C扫描图像介绍如下:
(1)裂纹试样的C扫描图像
在裂纹试样上获得的不同深度z处的两幅C扫描图像如图2所示。
[attach]46703[/attach]
图2裂纹的C扫描图像(2)未焊透试样的C扫描图像
在未焊透试样上获得的不同深度z处的两幅C扫描图像如图3所示。
[attach]46704[/attach][attach]46705[/attach]
(a)z=5.40mm(b)z=5.80mm
图3未焊透的C扫描图像(3)气孔试样的C扫描图像
在气孔试样上获得的不同深度z处的两幅C扫描图像如图4所示。
[attach]46706[/attach]
图4气孔的C扫描图像(4)夹渣试样的C扫描图像
在夹渣试样上获得的不同深度z处的两幅C扫描图像如图5所示。
[attach]46707[/attach]
图5夹渣的C扫描图像2.2试验条件与图像尺寸
在不同焊接缺陷试样上进行扫描的扫描步长、扫描范围及所获得的C扫描显示图像尺寸与比例如表1所示。
表1焊接缺陷的C扫描试验条件与显示图象尺寸
[attach]46708[/attach]2.3测量与计算结果
由焊接缺陷的C扫描图像可以得到缺陷在图像中的尺寸,根据图像扫描比例可以计算缺陷的实际尺寸。以下根据图2~图5典型焊接缺陷C扫描图象所获得的缺陷图象尺寸,以及计算出的缺陷实际尺寸。
表2焊接缺陷的图象尺寸与计算得到的实际尺寸
[attach]46709[/attach]2.4分析与讨论
由以上试验结果可见,利用WFPSAM的C扫描功能可以得到焊接缺陷试样在不同深度层面上的超声C扫描图象。由于焊接缺陷与母材之间声学参数的不同,从而可以得到焊接缺陷在不同深度层面上的二维声学图象。实验表明:二维声学图象可以显示出焊接缺陷在一定深度处的剖面图象。对裂纹、未焊透等一类线状缺陷可以得到它们在层面上的形状、位置、分布和尖端走向。由所选择的扫描比例和缺陷的图象尺寸可计算它们在不同部位的长度和宽度。对条块状夹渣及密集气孔、夹渣等体积形缺陷可以得到它们在层面上的形状、位置、分布范围和密集程度,可以计算出它们在不同部位的长度、宽度。对单个分散气孔、夹渣可以得到它们在不同层面上的分布位置,形状和直径大小。
适当减少沿深度Z方向上C扫描的层间间隔进行逐层扫描,可以得到一系列近于连续的缺陷C扫描层析图象。利用计算机图象处理技术或几何作图法,将一系列层面图象叠加,便可获得试样的三维图象。由试样的三维图象可以获得缺陷的立体图象、三维尺寸和空间分布。
减小扫描步长,可以获得具有更高分辨率的图象,更适合于分散的单个细小夹渣、气孔类的检测以及大尺寸缺陷的局部精细检测。
3结论
(1)利用WFPSAM的C扫描功能可以获得焊接缺陷在不同深度处的超声C扫描成像,从所显示的二维声学图像上可以直观地看到在一定深度层面上焊接缺陷的形状、分布、取向,根据缺陷图像可以得到缺陷在层面各个方向上的尺寸,包括长度、宽度及单个分散缺陷的大小,密集缺陷的分布范围等。
(2)将不同层面的C扫描图像进行叠加,便可以获得试样的三维图像,从而可以得到缺陷的立体图像、三维尺寸和空间分布,为焊接结构安全评定中断裂力学的计算提供准确的依据。
(3)在实际的工程检测中可以用A型仪器及方法进行初探,检出缺陷并对缺陷准确定位之后,对需作安全评定的缺陷部位利用WFPSAM进行层析成像,从而获得缺陷的立体图像、三维尺寸和空间分布,可以同时满足工程检测及安全评定对缺陷检测的要求。
作者简介刘德镇,男,1942年生,1964年毕业于山东工业大学物理系。现为山东工业大学副教授、硕士研究生导师。1982年起获得劳动人事部及中国机械工程学会高级无损检测人员技术资格。主要研究方向:焊接检验、材料的无损检测与失效分析。已鉴定完成科研成果三项,获得山东省科技进步奖一项,发表学术论文20余篇,主编著作一部,参编著作五部。
参考文献
1陈戈林,胡思正,罗淑云等.500MHz反射式机械扫描声学显微镜的研究和试制.声学学报,1988,13(2):81~87
2张克潜,陈戈林.声学显微镜的现状和发展.电子学报,1984,12(4):84~91
3GanWS等.超声显微镜及其应用.声学技术,1992,11(1,2):26~28
4陈戈林,任文革,郭艳林.声学显微镜及应用研究.无损探伤,1993,(6):7~11
5陈戈林,胡思正,罗淑云等.智能化THSAM-5型声显微镜及其应用研究.无损检测,1992,14(5):122~124
6王应龙.等离子喷涂陶瓷涂层的声学显微像.应用声学,1988,7(4):1~6
7胡建恺等.超声检测原理与方法.合肥:中国科技大学出版社.1993:246
8Claudio.AcousticMicroscopyandDispersionofLeakyRayleighWavesonRandomlyRoughSurfaces:ATheoreticalStudy.IEEETransactionsonUltrasonic,Ferroelectrics,andFrequencyControl.1996,43(3):428~433