氢火焰离子化检测器的操作条件
Alu · 2011-05-30 21:48 · 34907 次点击
氢火焰离子化检测器的操作条件
火焰温度,离子化程度和收集效率都与载气、氢气、空气的流量和相对比值有关。其影响如下所述。
氢气流速的影响
氢气作为燃烧气与氮气(载气)预混合后进入喷嘴当氮气流速固定时,随着氢气流速的蹭加,输出信号也随之增加,并达到一个最大值后迅速下降。如图2-10所示。由图可见:通常氢气的最佳流速为40~60mL/min。有时是氢气作为载气,氮气作为补充气,其效果是一样的。
氮气流速的影响
在我国多用N2作载气,H2作为柱后吹扫气进入检测器,对不同k值的化合物,氮气流速在一定范围增加时,其响应值也增加,在30mL/min左右达到一个最大值而后迅速下降,如图2-11所示。这是由于氮气流量小时,减少了火焰中的传导作用,导致火焰温度降低,从而减少电离效率,使响应降低;而氮气流量太大时,火焰因受高线速气流的干扰而燃烧不稳定,不仅使电离效率和收集效率降低,导致响应降低,同时噪声也会因火焰不稳定而响应增加。所以氮气一般采用流量在30mL/min左右,检测器可以得到较好的灵敏度。在用H2作载气时,N2作为柱后吹扫气与H2预混合后进入喷嘴,其效果也是一样的。
此外氮气和氢气的体积比不一样时,火焰燃烧的效果也不相同,因而直接影响FID的响应。从图2-12可知N2∶H2的最佳流量比为1~1.5。也有文献报道,在补充气中加一定比例NH3,可增加FID的灵敏度。
空气流速的影响
空气是助燃气,为生成CHO+提供认O2。同时还是燃烧生成的H2O和CO2的清扫气。空气流量往往比保证完全燃烧所需要的量大许多,这是由于大流量的空气在喷嘴周围形成快速均匀流场。可减少峰的拖尾和记忆效应。其影响如图2-13所示。
由图2-13可知空气最佳流速需大于300mL/min,一般采用空气与氢气该量比为1∶10左右。由于不同厂家不同型号的色谱仪配置的FID其喷口的内径不相同,其氢气、氮气和空气的最佳流量也不相同,可以参考说明书进行调节,但其原理是相同的。
检测器温度的影响
增加FID的温度会同时增大响应和噪声;相对其他检测器而言,FID的温度不是主要的影响因素,一般将检测器的温度设定比柱温稍高一些,以保证样品在FID内不冷凝;此外FID温度不可低于100℃,以免水蒸气在离子室冷凝,导致离子室内电绝缘下降,引起噪声骤增;所以FID停机时必须在100℃以上灭火(通常是先停H2,后停FID检测器的加热电流),这是FID检测器使用时必须严格遵守的操作。
气体纯度
从FID检测器本身性能来讲,在常量分析时,要求氢气、氮气、空气的纯度为99.9%以上即可,但是在痕量分析时,则要求纯度高于99.999%,尤其空气的总烃要低于0.1μL/L,否则会造成FID的噪声和基线漂移,影响定量分析。