色彩理论知识
仪器信息网 · 2011-05-30 21:51 · 36433 次点击
颜色交流
每个人根据他/她自己的视觉技巧和记忆感受不同的颜色。例如,一个人看起来亮红玫瑰在另一个人眼里是深红色的,甚至另外一个人可能认为它不过是“仅仅红色”而已。同样,不同光线条件在颜色显示上具有非常重要的影响。对于同一物体,颜色三要素中的光源和观察者是不断变化的。
颜色模型的需要
在颜色相关产业,例如图像艺术、涂料、整形、纺织品和其它产业,颜色三要素的不同会引起设计者、客户、供应商、印刷商和其他制造商的颜色差异。为了帮助客户准确地交流颜色信息,我们提出多种颜色模型解决方案。颜色模型规定一些属性或原色,将颜色分解成不同属性的数字化组合。例如,要在评估两个非常匹配的“红色”时,我们可以通过数值比较它们在三维色空间的关系,而不是用“更红”或“更黑”之类的词。这些模型也帮助我们更好地描述颜色,代替“淡黄”或“金黄”之类含义模糊的词。
我们将在下面部分介绍一些颜色模型:RGB颜色模型、CMY(K)颜色模型、L*C*H°颜色模型、CIE颜色系统和反射光谱颜色模型。
RGB颜色模型
我们的眼睛集中在可见光谱的主要区域(红、绿和蓝,RGB),每一秒钟都可处理大量颜色信息。颜色扫描仪、监视器和电视设备都采用这个颜色模型(也称为加色三原色或光原色)来组成不同颜色。
加色三原色
理论上,将纯红色、纯绿色和纯蓝色按相等比重混合在一起产生白色;这三种颜色都没有的时候产生黑色。其中,改变光强度的组合会产生很大范围变化的不同的颜色(色域)。例如,100%红色,100%蓝色,没有绿色则生成品红色;100%蓝色和100%绿色,没有红色则产生青色;100%红色和绿色,没有蓝色则生成黄色。
在理论上,我们可以在三维色空间内按锥形描述加色和减色三原色。每个原色位于它的互补色的对角:红色和青色相对,绿色和品红色相对,黄色和蓝色相对(当我们讨论“使用减色三原色再生颜色”时,你可以看到这些关系是如何被用于在纸上产生颜色的)。
使用加色三原色再生颜色
你的显示器使用红、绿和蓝光的叠成效应生成颜色。显示器屏幕的内表面由微粒象素组成,每个微粒包括三个荧光点:红、绿、蓝。电子枪位于屏幕的后方,向屏幕上每个点发射电子束。计算机从图形应用程序或扫描仪发出数字信号到电子枪,这些信号控制电子枪设置的电压强度。不同RGB的强度组合将产生不同的颜色。电子枪由电磁石帮助瞄准以确保快速精确地屏幕刷新。
CMY和CMYK颜色模型
加色三原色是这样产生颜色的:由黑色开始(没有光),然后增加不同比例的红、绿和