电磁兼容外场测试中的干扰抵消技术
Tess · 2012-02-15 19:26 · 38313 次点击
由于大型电子设备在进行电磁兼容(EMC)性考核时,很难进入屏蔽室进行而只能在室外开阔场地进行,从而难以控制测试时的环境背景噪声电平,使测试结果出现很大误差。如何区分背景噪声信号,鉴别出受试设备发出的被测信号一直是EMC测试中的一个难题。在各种不同的背景信号中,同频干扰与被测信号无法通过频谱进行分离,本文的目的就是想用空间分离技术,通过适当的测试方法,对于任意方向的同频干扰信号进行有效的拟制,从而得到有效的测试结果。
阵列波束方向图可以分布在的全部角度范围之内,由于在图3(a)所示的线阵结构中,阵面(由竖虚线表示)左、右两部分角度域是关于该阵面对称的,因而,如图3(a)所示的贞烈波束方向图也是关于阵面对称分布的。图中波束方向是在的角度范围里,此时用于延迟补偿的值应为正数(即相位滞后);而若要使波束方向被调整到的范围内时,就所需延迟补偿的值应为负数(即相位超前),当然这是物理不可实现的。然而,对于单频正弦波信号来说,可以用(其中为信号周期)代替这个负数的值,以达到波束方向调整的目的。
通常情况下,当阵列的各个相邻天线单元之间的间距大于时,会产生所谓“栅瓣”现象,即在的全部角度范围之内,方向图会出现两次或两次以上的重复。这样,在阵列接收和检测信号时,将会产生“空间模糊”,即阵列不能确定信号真实到达方向。
任意一种阵列的波束方向图除了主波束以外,都存在有副瓣。而当空间同时存在目标回波信号和不同方向入射的干扰信号时,要求阵列能在目标方向产生主波束,而同时能在干扰方向形成方向图零点。这样,若再用如图3(a)所示的阵列结构就不能满足实际需要了。图4(a)表示的线阵结构与图3(a)的区别在于,将各个天线单元的延迟补偿改换成正交两路加权的调整方法。通过调整这些权值可以同时得到所需要的主波束方向与方向图零深(增益极低)方向。对于单频正弦波信号而言,由于各个阵元的延迟补偿实际等效为乘一个复权系数,因而,每个阵元的同相信号与经90°移相后的正交信号分别由权系数实部和虚部相乘后就可完成对波束方向图的调整,且这种调整的自由度将增大。图4(b)是调整以后的波束方向图,它不仅将主波束对准目标方向,同时还在干扰到达方向形成了一个零深。