色谱的分类

  仪器网 ·  2012-07-19 00:41  ·  19938 次点击
按两相状态
气相色谱法·气固色谱法·气液色谱法液相色谱法·液固色谱法·液液色谱法
按固定相的几何形式
·柱色谱法(columnchromatography)柱色谱法
柱色谱法是将固定相装在一金属或玻璃柱中或是将固定相附着在毛细管内壁上做成色谱柱,试样从柱头到柱尾沿一个方向移动而进行分离的色谱法。·纸色谱法(paperchromatography)纸色谱法是利用滤纸作固定液的载体,把试样点在滤纸上,然后用溶剂展开,各组分在滤纸的不同位置以斑点形式显现,根据滤纸上斑点位置及大小进行定性和定量分析。·薄层色谱法(thin-layerchromatography,TLC)薄层色谱法是将适当粒度的吸附剂作为固定相涂布在平板上形成薄层,然后用与纸色谱法类似的方法操作以达到分离目的。
按分离原理
按色谱法分离所依据的物理或物理化学性质的不同,又可将其分为:吸附色谱法:利用吸附剂表面对不同组分物理吸附性能的差别而使之分离的色谱法称为吸附色谱法。适于分离不同种类的化合物(例如,分离醇类与芳香烃)。分配色谱法:利用固定液对不同组分分配性能的差别而使之分离的色谱法称为分配色谱法。离子交换色谱法:利用离子交换原理和液相色谱技术的结合来测定溶液中阳离子和阴离子的一种分离分析方法,利用被分离组分与固定相之间发生离子交换的能力差异来实现分离。离子交换色谱主要是用来分离离子或可离解的化合物。它不仅广泛地应用于无机离子的分离,而且广泛地应用于有机和生物物质,如氨基酸、核酸、蛋白质等的分离。尺寸排阻色谱法:是按分子大小顺序进行分离的一种色谱方法,体积大的分子不能渗透到凝胶孔穴中去而被排阻,较早的淋洗出来;中等体积的分子部分渗透;小分子可完全渗透入内,最后洗出色谱柱。这样,样品分子基本按其分子大小先后排阻,从柱中流出。被广泛应用于大分子分级,即用来分析大分子物质相对分子质量的分布。亲和色谱法:相互间具有高度特异亲和性的二种物质之一作为固定相,利用与固定相不同程度的亲和性,使成分与杂质分离的色谱法。例如利用酶与基质(或抑制剂)、抗原与抗体,激素与受体、外源凝集素与多糖类及核酸的碱基对等之间的专一的相互作用,使相互作用物质之一方与不溶性担体形成共价结合化合物,用来作为层析用固定相,将另一方从复杂的混合物中选择可逆地截获,达到纯化的目的。可用于分离活体高分子物质、过滤性病毒及细胞。或用于对特异的相互作用进行研究。
编辑本段原理
色谱过程的本质是待分离物质分子在固定相和流动相之间分配平衡的过程,不同的物质在两相之间的分配会不同,这使其随流动相运动速度各不相同,随着流动相的运动,混合物中的不同组分在固定相上相互分离。根据物质的分离机制,又可以分为吸附色谱、分配色谱、离子交换色谱、凝胶色谱、亲和色谱等类别。
吸附色谱
吸附色谱利用固定相吸附中心对物质分子吸附能力的差异实现对混合物的分离,吸附色谱的色谱过程是流动相分子与物质分子竞争固定相吸附中心的过程吸附色谱的分配系数表达式如下:K_a=\frac{}{}其中表示被吸附于固定相活性中心的组分分子含量,表示游离于流动相中的组分分子含量。分配系数对于计算待分离物质组分的保留时间有很重要的意义。
分配色谱
分配色谱利用固定相与流动相之间对待分离组分溶解度的差异来实现分离。分配色谱的固定相一般为液相的溶剂,依靠图布、键合、吸附等手段分布于色谱柱或者担体表面。分配色谱过程本质上是组分分子在固定想和流动相之间不断达到溶解平衡的过程。分配色谱的狭义分配系数表达式如下:K=\frac=\frac{X_s/V_s}{X_m/V_m}式中Cs代表组分分子在固定相液体中的溶解度,Cm代表组分分子在流动相中的溶解度。
离子交换色谱
离子色谱分析法
离子色谱分析法出现在20世纪70年代,80年代迅速发展起来,以无机、特别是无机阴离子混合物为主要分析对象。离子交换色谱利用被分离组分与固定相之间发生离子交换的能力差异来实现分离。离子交换色谱的固定相一般为离子交换树脂,树脂分子结构中存在许多可以电离的活性中心,待分离组分中的离子会与这些活性中心发生离子交换,形成离子交换平衡,从而在流动相与固定相之间形成分配。固定相的固有离子与待分离组分中的离子之间相互争夺固定相中的离子交换中心,并随着流动相的运动而运动,最终实现分离。离子交换色谱的分配系数又叫做选择系数,其表达式为:K_s=\frac{}{}其中表示与离子交换树脂活性中心结合的离子浓度,表示游离于流动相中的离子浓度。
凝胶色谱
凝胶色谱仪
凝胶色谱的原理比较特殊,类似于分子筛。待分离组分在进入凝胶色谱后,会依据分子量的不同,进入或者不进入固定相凝胶的孔隙中,不能进入凝胶孔隙的分子会很快随流动相洗脱,而能够进入凝胶孔隙的分子则需要更长时间的冲洗才能够流出固定相,从而实现了根据分子量差异对各组分的分离。调整固定相使用的凝胶的交联度可以调整凝胶孔隙的大小;改变流动相的溶剂组成会改变固定相凝胶的溶涨状态,进而改变孔隙的大小,获得不同的分离效果。
编辑本段吸附色谱
吸附色谱利用固定相吸附中西对物质分子吸附能力的差异实现对混合物的分离,吸附色谱的色谱过程是流动相分子与物质分子竞争固定相吸附中心的过程。
基本原理
(1)物理吸附又称表面吸附,是因构成溶液的分子(含溶质及溶剂)与吸附剂表面分子的分子间里的相互作用所引起的。吸附剂
a)基本规律:“相似者易于吸附”,固液吸附时,吸附剂、溶质、溶剂三者统称为吸附过程的三要素。b)基本特点:无选择性、可逆吸附、快速。c)基本原理:吸附与解吸附的往复循环。d)三要素:吸附剂、溶质(被分离物)、溶剂。色谱柱物理吸附过程:吸附——解吸附——再吸附——再解析——直至分离(2)化学吸附a)基本特点:有选择性、不可逆吸附。b)基本原理:产生化学反应。酸性物质与Al2O3发生化学反应;碱性物质与硅胶发生化学反应;Al2O3容易发生结构的异构化,应尽量避免。(3)半化学吸附1)基本特点:介于物理吸附和化学吸附之间。2)基本原理:以氢键的形式产生吸附。如聚酰胺对黄酮类、醌类等化合物之间的氢键吸附,力量较弱,介于前两者之间,也有一定的应用。
吸附剂
吸附剂的一般要求:较大的表面积与一定的吸附能力。不与展开剂其化学变化,不与待分离的物质产生反应或催化、分解或缔合,颗粒均匀。(1)极性吸附剂硅胶,氧化铝均为极性吸附剂,特点为:a)对极性物质具有较强的亲和能力,极性强的溶质将被优先吸附。b)溶剂极性较弱,则吸附剂对溶质将表现出较强的吸附能力。溶剂极性增强,则吸附剂对溶质的吸附能力随之减弱。c)溶质即使被硅胶、氧化铝吸附,但一旦加入极性较强的溶剂时,又可被后者置换洗脱下来。极性强弱的判断(与功能基的种类、数目多少和排列方式有关):亲水性基团与极性成正比,亲脂性基团与极性成反比;游离型化合物极性弱、具亲脂性,解离型化合物极性强、具亲水性;溶剂的极性—依据介电常数来决定。色谱试剂(2)聚酰胺聚酰胺吸附剂可分包括锦纶6(聚己内酰胺)和锦纶66(聚己二酰己二胺),为氢键吸附,半化学吸附。聚酰胺分子中有许多酰胺基,聚酰胺上的C=O与酚基,黄酮类、酸类中的-OH或-COOH形成氢键。酰胺基中的氨基与醌类或硝基类化合物中的醌基或硝基形成氢键。由于被分离物质的结构不同,或同一类结构化合物中的活性基团的数目及位置的不同而是之于聚酰胺形成氢键的能力不同而得到分离。(3)活性炭活性炭为非极性吸附剂,故与硅胶、氧化铝相反,对非极性物质具有较强的亲和能力,在水中对溶质表现出强的吸附能力。溶剂极性降低,则活性炭对溶质的吸附能力也随之降低。吸附剂的吸附力一定时,溶质极性越强,洗脱剂的极性越弱。
操作方式
吸附薄层色谱法是指根据各成分对同一吸附剂吸附能力不同,使在移动相(溶剂)流过固定相(吸附剂)的过程中,连续的产生吸附、解吸附、再吸附、再解吸附,从而达到各成分的互相分离的目的。

0 条回复

暂无讨论,说说你的看法吧!

 回复

你需要  登录  或  注册  后参与讨论!