差动变压器的误差因素分析
仪器网 · 2012-07-20 00:20 · 16529 次点击
1、激励电压幅值与频率的影响
激励电源电压幅值的波动,会使线圈激励磁场的磁通发生变化,直接影响输出电势。而频率的波动,只要适当地选择频率,其影响不大。
2、温度变化的影响
周围环境温度的变化,引起线圈及导磁体磁导率的变化,从而使线圈磁场发生变化产生温度漂移。当线圈品质因数较低时,影响更为严重,因此,采用恒流源激励比恒压源激励有利。适当提高线圈品质因数并采用差动电桥可以减少温度的影响。
3、零点残余电压
当差动变压器的衔铁处于中间位置时,理想条件下其输出电压为零。但实际上,当使用桥式电路时,在零点仍有一个微小的电压值(从零点几mV到数十mV)存在,称为零点残余电压。如图是扩大了的零点残余电压的输出特性。零点残余电压的存在造成零点附近的不灵敏区;零点残余电压输入放大器内会使放大器末级趋向饱和,影响电路正常工作等。
图中e1为差动变压器初级的激励电压,e20包含基波同相成分、基波正交成分,二次及三次谐波和幅值较小的电磁干扰等。
零点残余电压产生原因:
①基波分量。由于差动变压器两个次级绕组不可能完全一致,因此它的等效电路参数(互感M、自感L及损耗电阻R)不可能相同,从而使两个次级绕组的感应电势数值不等。又因初级线圈中铜损电阻及导磁材料的铁损和材质的不均匀,线圈匝间电容的存在等因素,使激励电流与所产生的磁通相位不同。
②高次谐波。高次谐波分量主要由导磁材料磁化曲线的非线性引起。由于磁滞损耗和铁磁饱和的影响,使得激励电流与磁通波形不一致产生了非正弦(主要是三次谐波)磁通,从而在次级绕组感应出非正弦电势。另外,激励电流波形失真,因其内含高次谐波分量,这样也将导致零点残余电压中有高次谐波成分。
消除零点残余电压方法:
1.从设计和工艺上保证结构对称性
为保证线圈和磁路的对称性,首先,要求提高加工精度,线圈选配成对,采用磁路可调节结构。其次,应选高磁导率、低矫顽力、低剩磁感应的导磁材料。并应经过热处理,消除残余应力,以提高磁性能的均匀性和稳定性。由高次谐波产生的因素可知,磁路工作点应选在磁化曲线的线性段。
2.选用合适的测量线路
采用相敏检波电路不仅可鉴别衔铁移动方向,而且把衔铁在中间位置时,因高次谐波引起的零点残余电压消除掉。如图,采用相敏检波后衔铁反行程时的特性曲线由1变到2,从而消除了零点残余电压。
相敏检波后的输出特性
3.采用补偿线路
①由于两个次级线圈感应电压相位不同,并联电容可改变其一的相位,也可将电容C改为电阻,如图(a)。由于R的分流作用将使流入传感器线圈的电流发生变化,从而改变磁化曲线的工作点,减小高次谐波所产生的残余电压。图(b)中串联电阻R可以调整次级线圈的电阻分量。
调相位式残余电压补偿电路
②并联电位器W用于电气调零,改变两次级线圈输出电压的相位,如图所示。电容C(0.02μF)可防止调整电位器时使零点移动。
电位器调零点残余电压补偿电路
③接入R0(几百kΩ)或补偿线圈L0(几百匝)。绕在差动变压器的初级线圈上以减小负载电压,避免负载不是纯电阻而引起较大的零点残余电压。