上海光源工程采购LEICA DM2500P偏光显微镜

  仪器仪表网 ·  2012-07-30 09:58  ·  54787 次点击
近期,上海光源工程从本公司采购了德国LEICADM2500P研究级偏光显微镜.
上海光源是一台高性能的中能第三代同步辐射光源,它的英文全名为ShanghaiSynchrotronRadiationfacility,简称SSRF。它是我国迄今为止最大的大科学装置和大科学平台,在科学界和工业界有着广泛的应用价值,每天能容纳数百名来自全国或全世界不同学科、不同领域的科学家和工程师在这里进行基础研究和技术开发。
同步辐射是由以接近光速运动的电子在磁场中作曲线运动改变运动方向时所产生的电磁辐射,其本质与我们日常接触的可见光和X光一样,都是电磁辐射。由于这种辐射是1947年在同步加速器上被发现的,因而被命名为同步辐射(Synchrotronradiation)。由于同步辐射造成的能量损失极大地阻碍了高能加速器能量的提高,因此在早期同步辐射被作为高能物理极力要排除的因素。后来,人们发现同步辐射具有常规光源不可比拟的优良性能,如高准直性,高极化性,高相干性,宽的频谱范围、高光谱耀度和高光子通量等。从70年代开始,发达国家逐步开展了同步辐射的应用研究,其卓越的性能为人们开展科学研究和应用研究带来了广阔的前景,因此在几乎所有的高能电子加速器上都建造了同步辐射线站,以及各种应用同步辐射光的实验装置。
同步辐射光源自1947年代诞生以来,已有近60年的历史,随着应用研究工作不断深入,应用范围不断拓展,对同步辐射光源的要求也不断提高,并经历了三代的快速历史发展阶段。第一代同步辐射光源是寄生于高能物理实验专用的高能对撞机的兼用机,如北京光源(BSR)就是寄生于北京正负电子对撞机(BEPC)的典型第一代同步辐射光源;第二代同步辐射光源是基于同步辐射专用储存环的专用机,如合肥国家同步辐射实验室(HLS);第三代同步辐射光源是基于性能更高的同步辐射专用储存环的专用机,如上海光源(SSRF)。目前世界上已建成的第一代同步辐射光源有17台,第二代有23台,第三代有13台(包括我国台湾及南韩的各1台),正在建造和设计的第三代同步辐射光源有12台。预计到2010年前后,每天将有上万名科学家和工程师同时使用这些同步辐射光源,从事前沿学科研究和高新技术开发。
第一代、第二代、第三代同步辐射光源之间的最主要的区别,是在于作为发光光源的电子束斑尺寸或电子发射度的迥异。例如第二代的合肥同步辐射光源,其电子束发射度约150纳米弧度,而第三代的上海光源,其电子束发射度约4纳米弧度,二者相差近40倍,结果得到的光亮度差1600倍,近三个量级!另一显著差别是可使用的插入件的数量悬殊,第二代光源仅能安装几个插入件,而第三代光源可有十几个到几十个插入件。由于插入件产生的光较之弯转磁铁产生的光具有更高的亮度和更好的性能,可见插入件数量的多寡可直观地表征光源的性能的优劣。
2、上海光源的先进性能与国际地位
1)上海光源的先进性
性能价格比高:储存环的能量3.5GeV,在中能区光源中能量最高,性能优化在用途最广的X射线能区。利用近年来插入件技术的新进展,不仅可在光子能量为1~5keV产生最高耀度的同步辐射光,而且在5~20keV光谱区间可产生性能趋近6~8GeV高能量光源所产生的高耀度硬X光;
全波段:波长范围宽,从远红外直到硬X射线,且连续可调。利用不同波长的单色光,可揭示用其他光源无法得知的科学秘密;
高强度:总功率为600千瓦,是X光机的上万倍。光通量大于1015光子/(S.10-3bw)。高强度和高通量为缩短实验数据获取时间、进行条件难以控制的实验以及医学、工业应用提供了可能;
高耀度:其耀度是最强的X光机的上亿倍,主要光谱复盖区的光耀度为1017~1020光子/(S.mm2.mrad2.10-3bw)。高亮度为取得突破性科技成果提供了高空间分辨、高动量分辨和超快时间分辨的条件;
优良的脉冲时间结构:其脉冲宽度仅为几十皮秒,可以单束团或多束团模式运行,相邻脉冲间隔可调为几纳秒至微秒量级,能为研究化学反应动力过程、生命过程、材料结构变化过程和大气环境污染过程等提供正确可信的数据;
高偏振:上海光源中在电子轨道平面上放出的同步光是完全线极化的,而离开电子轨道平面方向发射的同步光则是椭圆极化的,因而是研究具有旋光性的生物分子、药物分子和表现为双色性的磁性材料的有力工具;
准相干:上海光源从插入件引出的高耀度光具有部分相干性,为众多前沿学科的显微全息成像分析开辟了道路;
高稳定性,可以提供十几到几十小时的稳定束流,光束位置稳定度仅约光斑的10%;
高效性:总共将建设近60条以上光束线和上百个实验站,给用户的供光机时将超过5000小时/年,每天可容纳几百名来自海内外不同学科领域或公司企业的科学家/工程师,夜以继日地在各自的实验站上使用同步辐射光;
灵活性:光源可运行于单束团、多束团、高通量、高亮度和窄脉冲等多种模式,可依据用户需求快速变换运行模式,以满足用户的多种需求;
前瞻性:首批光束线站的科学目标先进,能够满足我国多个学科领域对同步辐射应用的迫切需要,并至少具有30年科学寿命。
2)建成后的水平和国际地位
SSRF能量居世界第四(仅次于日本SPring-8、美国APS、欧洲ESRF),性能超过同能区现有的第三代同步辐射光源,是目前世界上正在建造或设计中的性能最好的中能光源之一;
光源建造规模符合我国国情,投资适中,在宽广的光子能区具有好的性能价格比。光子能量范围优化在0.1~40keV。在5~20keV的硬X射线区,其耀度可接近大而昂贵的6~8GeV的第三代光源。在1~5keV能谱范围内的耀度居世界最高之列;
SSRF将在亚洲地区与日本SPring-8(8GeV)、韩国PLS(2.5GeV)、中国台湾TLS(1.5GeV)和印度Indus-II(2.5GeV)等高低能量的第三代同步辐射光源一起形成可以与美国和欧洲比拟的能量和性能分布合理的光源群,成为面向世界的同步辐射实验平台。
科学寿命大于30年。
3、上海光源的建设目标与技术挑战
1)上海光源的建设目标
上海光源属中能第三代同步辐射光源,其电子束能量为3.5GeV,仅次于日本的SPring-8(8GeV)、美国的APS(7GeV)和欧洲共同体的ESRF(6GeV),居世界第四。上海光源包括一台100MeV的电子直线加速器、一台能在0.5秒内把电子束从100MeV加速到3.5GeV全能量的增强器和一台3.5GeV的高性能电子储存环,以及首批建成的71条光束线站。上海光源储存环平均流强300mA,最小发射度4纳米弧度,束流寿命大于10小时。配以先进的插入件后,可在用户需求最集中的光子能区(0.1~40keV)产生高通量、高耀度的同步辐射光,光子亮度大于1019。储存环共有40块弯转二极磁铁、16个6.5米的标准直线节和4个12米的超长直线节,具有安装26条插入件光束线、36条弯铁光束线和若干条红外光束线等共60多条光束线的能力,它可同时为近百个实验站供光。首批建造的5条基于插入件的光束线站,分别是生物大分子晶体学线站、XAFS线站、硬X射线微聚焦及应用线站、X射线成像与生物医学应用线站、软X射线扫描显微线站;2条基于弯转磁铁的光束线站分别是高分辨衍射线站和X射线散射线站。此外,还将建造一个基于软X射线光束线的X射线干涉光刻分支线站。
2)上海光源的技术难度
上海光源是极其复杂的大科学工程,包含有众多系统,它们分别涉及超导高频及低温技术、超高真空技术、高精度数字化电源技术、高性能磁铁及机械准直技术、高性能束流诊断技术、先进控制技术,以及先进光束线技术等多项先进技术,部件研制及系统集成难度极高;特别是须在保证各系统性能的前提下达到很低的故障率,以实现提供十几到几十小时的稳定束流、年运行5000小时以上供光时间的预定目标。
高耀度要求储存环具有小发射度。上海光源的水平发射度仅约4纳米弧度,光源点水平束斑尺寸约150微米、垂直束斑尺寸仅约10微米。然而,低发射度要求储存环的动力学孔径只能很小,也带来了光束的各种不稳定性、束流寿命短等难题。可见,如何优化光源的动力学性能以提高束流寿命,是一大难题。
为保持束流稳定,其轨道的垂直稳定度须控制在1微米以内,如何实现这指标是建造上海光源的一大难点。严格控制地基的不均匀沉降、储存环隧道和实验大厅地板的扭曲和变形,严格限定储存环隧道内空气温度的变化和光源设备冷却水温度的变化,监测和控制各种振动源,优化装置的机械结构,采用振动的隔离和阻尼措施,提高电源稳定度和降低纹波,并应用轨道反馈手段等,使光源稳定性达到世界一流水平。
4、上海光源建设时间表
建筑安装工程:2004年12月-2006年9月
设备加工与制造:2005年3月-2007年11月
设备安装与系统调试:2005年7月-2008年3月
调束与试运行:2008年4月-2009年4月

0 条回复

暂无讨论,说说你的看法吧!

 回复

你需要  登录  或  注册  后参与讨论!