针对干扰数据采集系统解决方案
仪器网 · 2012-08-15 09:10 · 45066 次点击
引言
随着计算机技术、电磁兼容技术、传感器技术和信息技术的飞速发展和普及,数据采集与处理系统也越来越得到了广泛的应用。例如:在生产过程中,应用这一系统可对生产现场的工艺参数进行采集、监视和记录,为提高产品质量、降低生产成本提供信息和手段;在科学研究中,应用这一系统可获得大量的动态信号,是研究瞬间物理过程的有力工具,也是获得科学奥秘的重要手段之一。总之,不论在哪个应用领域,数据采集与处理越及时,工作效率、性能价格比就越高,取得的经济效益就越好。数据采集与处理系统的工作现场一般较恶劣,弥漫着各种干扰(来自系统内部和外部的),这些干扰通常称之为噪声。当被测信号很微弱时,就会被噪声“淹没”掉,导致很大的数据采集与处理误差,可靠性降低,还可能造成系统失灵,甚至酿成重大事故。因此,噪声是数据采集与处理的主要障碍之一,为了能精确地采集与处理数据,必须考虑到存在的各种干扰对系统的影响,把抗干扰问题作为系统设计的一个至关重要的内容,从软、硬件设计以及EDA仿真技术三个方面采取相应的措施以增强系统的抗干扰能力。
1系统抗干扰的硬件措施
总的方针是:屏蔽、接地、滤波、隔离与吸收。下面对系统的各个部分抗干扰措施进行介绍:
1.1电源系统的抗干扰
供电部分是非常重要的一环。系统中的设备大多数使用220V,50HZ的市电,由于电网的频率与电压波动较大,会直接对数采系统产生干扰,可采取以下一些措施:
1.1.1采用隔离变压器
由于数采系统与电网分别有各自的地线,如直接把两者相连,它们的地线之间存在电位差,会形成环流,造成共模干扰,采用隔离变压器将两者隔离。并且为了消除高频噪声,将变压器的初、次级之间用屏蔽层隔离。这样寄生电容减少了,抗共模干扰能力提高了。
1.1.2采用电源低通滤波器
由于电网的干扰大部分是高次谐波,采用低通滤波器来滤除大于50Hz的高次谐波,改善电源的性能。为了防止滤波器进入磁饱和,应在滤波器前面加设一个分布参数噪声衰减器(它由近50米长的双绞线组成)。使用低通滤波器时应注意以下几点:(1)低通滤波器本身应屏蔽,且屏蔽盒与系统的机壳要保持良好的接触;(2)为减少耦合,所用导线要靠近地面走线;(3)滤波器的输入与输出端要进行隔离;(4)滤波器的位置应尽量靠近需要滤波的地方,其间的连线也要进行屏蔽。(5)用先进的磁粉芯材料构成电源滤波器。
1.1.3采用交流稳压器
为防止电源的过压与欠压,必须采用有足够输出功率的稳压器。
1.1.4系统分别供电
为了阻止从供电系统窜入的干扰,可采用交流稳压电源串接隔离变压器、分布参数噪声衰减器和低通滤波器的方法;当系统中使用感性设备时,应将数采系统与感性设备的供电系统分开,以避免在供电线路之间出现相互干扰;同样要注意变压器与低通滤波器的屏蔽,以抑制静电干扰。
1.1.5采用电源模块单独供电
现代的芯片制造技术发展很快,各种电源模块层出不穷,如:DC—DC、三端稳压等模块。采用单独供电有以下一些优点:(1)每个电源模块单独对相应板卡进行电压过载保护,不会因为某个稳压器的故障使系统瘫痪;(2)有利于减小公共阻抗的相互耦合及公共电源的相互耦合,大大提高供电系统的可靠性,也有助于电源的散热;(3)总线上电压的变化,不会影响板卡上的电压,有助于提高板卡的工作可靠性。
1.1.6供电系统要合理布线
数采系统的电源引入线和输出线以及公共线的布置要遵循以下几点:(1)从电源引入口经开关器件至低通滤波器之间的馈线尽量用粗线;(2)电源后面的一段均应用双绞线且要短,还要分开布线;(3)尽量避免公共线。
1.1.7其它的一些技术
采用气体放电管、压敏电阻、抑制二极管(TVS)等元件进行保护,也可以在设备的外壳涂屏蔽层、加金属纤维等办法。
1.2数据采集卡、计算机、多路开关、A/D转换器及传感器之间的模拟部分的抗干扰
这部分的一些抗干扰方法与电源的抗干扰方法有共性,所以只将不同的地方作介绍。
1.2.1采用隔离技术
包括:(1)光电隔离(利用光电耦合器件实现电路上的隔离);(2)电磁隔离(在传感器与采集电路之间加入一个隔离放大器)。
1.2.2采用滤波器滤除干扰
在信号传输线上加滤波器。但要注意,对于微弱信号因为被衰减的大,所以不采用。
1.2.3采用浮置措施抑制干扰
即数采电路的模拟信号不接机壳或大地,阻断干扰电流的通路。
1.3印刷电路板的抗干扰
注意以下几点:(1)合理布置板上的元器件;(2)合理分配板上的插脚;(3)合理布线,电源线要宽;(4)对印刷电路板同样要采用屏蔽方法。
1.4计算机的外围电路、接口电路、数字量采集电路等数字部分的干扰
采用以下措施:(1)用积分电路抑制干扰;(2)用脉冲隔离门抑制干扰;(3)用削波器抑制干扰。
1.5接地技术
应遵循的原则为:(1)一点地原则:在输入端一点接地,避免共模干扰。电路中的数字地与模拟地仅在一点相连;(2)多点地原则:接地线越短越好,且每个电路应就近接地;(3)不同性质接地线的连线原则:应将弱信号模拟、数字电路和大功率驱动地线分开,模拟地与数地分开,高电平数字地与低电平信号分开,各个子系统地只在电源供电处才相接成一点入地;(4)接地线应尽量加粗原则。
1.6其它的一些硬件抗干扰方法
在计算机中(单片机)加入看门狗(WDT)电路,可有效地防止程序“跑飞”,避免系统“死机”。用数字式多路开关代替机械开关,可避免电火花干扰。用数字式滤波器(它采用的是软件滤波方法)代替传统的模拟式滤波器可提高抗干扰强度。
3.干扰的主要来源
数据采集与处理系统工作环境的干扰源很多,各有特点。下面从不同的角度对其进行分类:
3.1从干扰的来源划分
3.1.1内部干扰
指系统的内部电子电路的各种干扰,如元器件的老化引起的参数变化,以及电阻的热噪声,晶体管、场效应管等器件内部分配噪声和闪烁噪声,放大电路正反馈引起的自激振荡等。
3.1.2外部干扰
指外界窜入系统内的各种干扰。如电动机电刷引起的电火花,其它设备的脉冲开关接触所产生的电磁信号,自然界的雷电、宇宙辐射的电磁波等。
3.2按干扰的出现规律划分
3.2.1固定干扰
指系统附近固定的电气设备运行时发出的干扰。如邻近的“强电”设备的启停所引入的一个固定时刻的干扰。
3.2.2半固定干扰
指某些偶然使用的电气设备(如行车、电钻等)引起的干扰,有可预测性。
3.2.3随机干扰
指偶发性干扰,如闪电、供电系统继电保护的动作等干扰,难以预测发生时刻。
3.3从干扰产生和传播的方式分类
3.3.1静电干扰
指电场通过电容耦合的干扰,是由于元器件及导线之间的寄生电容所产生的。此外,也包括化纤、纤维之间的摩擦而使人体带电,从而由人体对电子设备所产生的干扰。
3.3.2磁场耦合干扰
磁场耦合干扰是一种感应干扰。是由于动力线、变压器、电动机、继电器、电风扇等产生的交变磁场穿过传输线或闭合导线形成的回路,而在传输线上或闭合导线上感应出的交流干扰电压。
3.3.3电磁辐射干扰
由各种大功率高频、中频发生装置及电火花产生的高频电磁波向周围空间辐射产生的干扰。
3.3.4电导通路耦合干扰
指电导通路由于接地电位的不同而在各单元回路之间的公共阻抗上产生的干扰。因为是多接地点,会在接地环路上形成环行电流,这种环行电流通过接地环路阻抗把瞬态噪声干扰耦合到下一级电路。
3.3.5漏电耦合干扰
是由于仪器内部的电路绝缘不良,而出现的漏电流引起的电阻耦合产生的干扰;也可能是由高输入阻抗器件组成的系统,因其阻抗与电路板绝缘电阻可以相比拟,通过电路板产生漏电流而形成的干扰。
3.4从干扰输入信号的关系划分
3.4.1串模(差模)干扰
串模干扰是指干扰信号与被测信号串联在一起,它成为被测信号的一部分,被送到放大器进行放大,影响很大。产生的原因:外部高压供电线交变电磁场通过寄生电容耦合进传感器一端;电源交变电磁场对传感器一端的漏电流耦合。
3.4.2共模干扰
共模干扰指在信号地和仪器地(大地)之间的干扰。产生的原因:(1)在数据采集系统附近有大功率的电器设备,电磁场以电感或电容形式耦合到传感器和传输导线中;(2)电源绝缘不良而引起的漏电或三相动力电网负载不平衡致使零线有较大的电流时,存在着较大的地电流和地电位差。如果系统有两个以上的接地点,则地电位差就会造成共模干扰;(3)电气设备的绝缘性能不良时,动力电源会通过漏电阻耦合到数据采集系统的信号回路,形成干扰;(4)在交流供电的仪器中,交流电会通过原、副边绕组间的寄生电容、整流滤波电路、信号电路与地之间的寄生电容到地构成回路,形成干扰。
3.5软件方面的干扰源
主要表现在以下几个方面:(1)不正确的算法产生错误的结果,最主要的原因是由于计算机处理器中的程序指数运算是近似计算,产生的结果有时有较大的误差,容易产生误动作;(2)由于计算机的精度不高,而加减法运算时要对阶,大数“吃掉”了小数,产生了误差积累,导致下溢的出现,也是噪声的来源之一;(3)由于计算机处理器是高速数字器件,所长它的运算器、控制器及控制寄存器易受电磁干扰。以上硬件受到干扰引起的计算机出现的诸如:程序计数器PC值变化、数据采集误差增大、控制状态失灵、RAM数据受干扰发生变化以及系统出现“死锁”等现象。