烟尘采样器测量方法和原理
仪器仪表网 · 2012-08-16 09:12 · 43301 次点击
一,测量方法和原理主流的烟气分析仪大多采用电化学和非分光红外的测试原理。电化学的仪器已经由进口仪器转变为以国产仪器为主,但高端的应用仪器仍然是以德图或凯恩为代表的进口仪器为主;红外的仪器近年来随着自主知识产权的红外技术在国内逐渐推广,也开始了批量国产化,并小型化,最终实现在便携烟气分析仪中的应用。
2.1电化学测试原理电化学测试方法又称为定电位电解法,是国家对二氧化硫的标准测定方法之一。(HJ/T57-2000《固定污染源排气中二氧化硫的测定定电位电解法》)。
二氧化硫(SO2)扩散通过传感器渗透膜,进入电解层,在恒电位工作电极上发生氧化反应;由此产生极限扩散电流,在一定范围内,其电流大小与二氧化硫浓度成正比。
电化学传感器还可广泛应用于一氧化氮、氯化氢、硫化氢等气体的测定。由于传感器的制作对工艺和材料的特殊要求,目前仍然主要依赖进口。
2.2非分光红外测试原理非分光红外气体测试方法已经广泛应用于工业过程和环境监测等领域。其核心部件红外传感器根据应用特点的不同,又可分为双光束、微流、微音器等不同类型。固定污染源监测系统中大量使用的是微流红外传感器,可实现对二氧化硫、一氧化氮、一氧化碳等主要污染物的测定。近年来,环保等相关部门也开始着手非分散红外测定方法的标准制定,以规范测试方法的应用。
微流红外传感器技术的工作原理为:红外光源①发出的红外光,经过切光器②调制频率后,进入测量气室④;由于二氧化硫等异种原子构成的分子对红外光具有吸收特性,若测量气室④中存在上述气体,则进入测量气室的部分红外光会被吸收,未被吸收的红外光进入检测器⑤。检测器⑤由前气室、后气室、微流传感器⑥组成,前、后气室充满待测组分的气体。在红外光的作用下,检测器前、后气室中的气体发生膨胀;由于存在膨胀差异,会导致前、后气室之间产生微小的流量;微流传感器⑥检测到该流量后,产生交流电压信号,信号经处理后得到气体的浓度。
3电化学分析仪的应用分析电化学分析仪具有小型、轻便、快捷等优点,在我国应用较多。但国内传感器制作技术有限,大部分仍需进口传感器,使用成本较大。实际使用中电化学仪器还会普遍存在取样流量、气体交叉干扰以及前处理等方面的问题。
3.1取样流量对电化学仪器的影响采用电化学传感器设计的烟气分析仪,不论是国产仪器,还是国外进口仪器,在使用过程中经常碰到“测不准”问题,即在实验室测试标准气体是好的,到了现场却测不准。这是因为,电化学传感器对流速的变化极为敏感。通常电化学类烟气分析仪的测试读数与采气流速呈“正相关”。
HJ/T57-2000《固定污染源排气中二氧化硫的测定定电位电解法》标准特别强调:“采气流速的变化直接影响仪器的测试读数”。
国家环境监测总站《火力发电业建设项目竣工环境保护验收监测技术规范》中也写道:“定电位电解法监测仪器对采样流量要求甚严,监测数据的显示与采样流量的变化成正比,当仪器采样流量减小时(例如烟道负压大于仪器抗负压能力),监测数据明显变小。在使用时为了减少测定误差,仪器的工作流量应与标定(校准)时的流量相等”。
而烟道内烟气,既有正压工况的,也有负压工况的,甚至存在压力忽大忽小的变化工况。极端情况下,有些烟道还存在很大的负压(如宝钢烧结机头负压=20kPa)。针对大多数烟道负压的情况居多,很多电化学烟气分析仪配置了大功率的取样气泵。这一措施仅能避免抽不出气的问题,仍然改变不了“负压降低采气流速”的问题。因此,不管你是大功率泵,还是小功率泵,只要烟道有负压,检测示值一定偏低。换句话说,只要你现场采气流速不等于实验室标定流速,测试示值肯定不准。
而现场测试过程中,流速对测量结果的影响往往难以暴露,只有当测试数据明显偏离时才会引起注意。所以对仪器操作人员提出了较高的要求,必须严格控制仪器标定和采样的流量,尽量保持一致。
3.2气体交叉干扰对电化学仪器的影响电化学传感器通过设置不同的电极电位,使得传感器对应某一特定气体敏感,从而达到测定的目的。但对于电极电位相似的气体,会产生交叉干扰。
提供电化学传感器的城市科技公司也明确给出了气体交叉干扰的参考数据:
单位:(%)
干扰气
传感器
SO2
NO
NO2
CO
H2S
SO2
100
0
-120