高压变频器在恒压供水方面的前期管理

  仪器信息网 ·  2009-07-01 21:40  ·  8693 次点击
摘要:本文节介绍了安邦信高压变频器及在恒压供水上的应用,包括概况介绍、选用国产安邦信变频器原因及高压变频器特点、主电路介绍、变频器选型等内容。
Abstract:ThepaperintyoducesthecharacteristicsofAMBhighvoltageinverterangitsapplicationsintheconstantpressurewatersupplysystem;includinggeneralityandsystem,
thereasonofselectingtheinvertersofAMB,thetraitofhighvoltage
inverter,theintroducingmaincircuitandthetypeofinverter.
关键词:高压变频器、特点、选型。
Keywords:HighvoltageinverterTraitType
引言
大中型自来水厂的水泵驱动电机一般是由高压电机驱动,其供水压力与流量的调节大多采用传统的方式,通过控制水泵的运行台数,辅助于阀门的开度变化的方式进行调节,由于供水时间相对集中,一日内的负荷变化较大,特别是在午夜与凌晨的时段,产生大马拉小车的现象,这种情况在春冬两季更为明显,既浪费能源,又使供水管网的压力波动。为了解决这一问题,平顶山煤炭集团自来水厂领域决定选用安邦信的AMB-HV1型高压变频器,对原有的水泵驱动电机进行变频节能改造。
系统概况
原高压电机以工频电源驱动时,电机定速运行,只能靠水泵出口侧的阀门来调节供水流量,不仅浪费能源,而且会产生“水锤效应”和“憋泵”现象,对此,我们采用安邦信高压变频器内置PID功能进行节能改造。
PID功能介绍:水泵变频调速是一个压力闭环控制系统,设定水泵出工侧压力参数为控制对象,当实际压力与设定压力发生偏差±H时,高压变频器则根据压力传感器反馈的信号,自动调节变频器的输出频率与电压,从而改变水泵驱动电机的转速,使水泵出口侧的压力维持恒定。
风机泵类负载变频调速的节能原理
风机泵类负载一般是通过改变阀门挡板的开度进行流量、压力调节的。图-1为泵(风机)扬程流量特性曲线(H-Q)图。在阀门控制的方式下,当系统流量从Qmax减少到Q1时,必须相应地关小阀门。这时,阀门的阻力变大,流体的节流损失增加,流道的阻力线从A0到A2。
泵(或风机)运行的工况点,从b点移到c点,扬程从H0上升到H2,而实际需要的工况点为d点。
根据泵(风机)的功率计算工式:
P=ρgQH/1000η式中:
P—水泵使用工况轴功率(KW)
ρ—输出介质的密度(kg/m3)
Q—使用工况点的流量(m3/s)
g—动力加速度(m/s2)
η—使用工况点泵的效率。
可求出运行在c点和d点泵的轴功率分别为:
Pc=PgQ1H2/1000η;Pd=PgQ1H1/1000η;
两者之差为ΔP=Pc-Pd=PgQ(H2-H1)/1000η
上式说明,用阀门控制流量时,有ΔP的功率被损耗浪费掉了。而且,随着阀门不断关小,这个损耗还要增加。
用变频调速控制时,当流量从Qmax减少到Q,由于阀门的开度没有变化,管网的阻力曲线不变,泵的特性曲线随转速由n0变化到n1。泵(风机)运行的工况点,则从b点移到d点,扬程从H0下降到H1,而用转速控制时,根据流量Q,扬程H,功率P和转速N之间的关系:
Q1/Q2=n1/n2;H1/H2=(n1/n2)2;P1/P2=(n1/n2)3
可知:流量Q与转速N的一次方成正比;扬程H与与转速N成平方比;而功率P与转速N成立方比,若转速下降20%,则轴功率对应下降49%,由此可见,采用变频调速可以大幅降低电机的电耗,节省能源,降低企业成本。
高压变频器的选型:
高压变频器是价格不菲的传动控制设备。因此,我们在设备的选型上要慎之又慎。国际知名的电气公司诸如:ABB,西门子,富士都在生产6KV系列高压变频器,而且在国内企业均有成功应用的例子,但它们的产品一般都售价高昂,同时在技术支持及售后服务方面不及国内便捷。近年,国内企业生产的高压变频器,经不断完善,其技术与十分成熟。综合产品价格、售后服务、设备的可靠性诸方面因素,最终我们选用了AMB-HV1型变频器。AMB-HV1型高压变频器采用了工业控制领域已广泛应用的成熟,可靠技术,诸如移相整流技术,H桥单相逆变技术等,因而具有很高的可靠性。
安邦信高压变频器与国外某品高压变频器性能对照表
AMB-HV1型高压变频器的基本原理与技术特点:
电源侧与逆变功率单元之间,设置了移相整流变压器,移相变压器边各绕阻之间互相错开一定的电角度,给逆变功率单元供电,各功率与移相变压器连线如图-2所示。
移相变压器的多重二次绕组对电网而言,类同多相负载,它即为逆变功率单元的电压叠加提供了条件,又解决了电源网侧的谐波问题。对AMB-HV1型高压变频器而言,每相有6个不同的相位组,形成了36脉冲的二极管整流电路。因此,它的基波电流值高,理论上讲35次以下的谐波可以消除电流的畸变率THPi<190.
AMB-HV1型高压变频器采用载波移相技术,各功率单元在主控CPU发生的控制电平下,依次导通关断。各功率单元输出的1,0,-1电平叠加后,形成了频率电压可调的多重化阶梯形,得到了几近完美的正弦波形。逆变功率单元由整流电路,电解电容滤波电路,H桥逆变路构成,其基本原理如图-3所示。
各功率单元的输入电压为590V,功率模块为低饱合压降,耐压为1700V的IGBT,功率单元与控CPU板之间监控电平由光纤传递,使布线的杂散电感减至最少,杜绝噪声损耗。
因为每相的逆变功率单元按一定的相位差串联,其输出的电压波形是多段阶梯波,且等效的开关频率很高。因此,它没有通用变频器6脉波逆变电路产生的6K±1的高次谐波产生的转矩脉动问题,避免了谐波电流引起的电机发热,杜绝了共模电压与dv/dt应力对电机与电缆的损害。因此,系统不需要再配置电抗器,滤波器。
实际使用情况:
系统采用2台水泵驱动电机共用一台高压变频器的形式,高压变频器分别控制2台水泵驱动电机的启动与调速及工频/变频的切换。主回路如图-4所示。
高压电机铭牌标定参数
额定电压:UN=6KV;额定电压IN=27A;额定转速NN=1475r/min;额定功率PN=220KW
电机启动平稳,消除了刺耳的启动噪音。
原高压电机工频启动时,由于起动时间短,起动冲击电流大(IN5~7倍),电机与水泵振动较大,会产生刺耳的噪音。使用高压变频器后,这些现象彻底消除。使用变频器后,电机启动时,电机的转速在高压变频器设定的范围内,从零开如平缓上升,电机电流亦随之平稳变化,电流表的指针平稳偏转,杜绝了工频启动时对电网的冲击。
电机启动时,水泵出口侧阀门关闭,变频器输出超始频率为2Hz,电机相电流为0.6A,1分钟以后,输出频率为43Hz,电机的相电流为18A。未采用变频器时,每当用水量大,水压低时,值班人员要及时开大水泵出口侧阀门,加大出水量;而当用水量小,水压电时,值班操作人员要及时关小水泵出口侧阀门,减小出水量。采用变频器后,网管水压通过压力闭环控制系统自动控制,供水压力始终保持在0.45MPa的设定压力上。而且,泵的启停台数由PLC根据工况情况自动控制,使系统由人力控制的方式上升到自动化控制的台阶。
节省电能降低企业设备运行成本
原高压电机以工频电源驱动时,电机定速运行,只能靠水泵出口侧的阀门来调节供水流量,不仅浪费能源,而且会产生“水锤效应”和“憋泵”现象,使用高压变频器,不仅解决了这些问题,而且可以根据供水管网所需流量,自动调节电机转速,从而节省电能,减少企业供水产生成本。解决了“水锤效应”“憋泵”水压忽高忽低的问题,减少管网爆管,水的“跑、冒、滴、漏”,可见使用变频器也利于节水。
表2为30天时内,工频与变频时电机的对照表,该表说明使用了变频器后水泵的电耗降低了30%,以当地电价0.55元/KWH计算,每月可节省27000元左右。
原高压电机未装置功率因数补偿电容,盘面上的功率因数表的读数在0.85的刻度上,使用高压变频器后,因高压逆变功率单元内均装置有大的电解电容,相当于在电网侧与机之间加入了一级容性隔离。使整个系数的效率大为提高。现在功率表的读数在0.95以上。可见,高压变频器不仅调频、调压、调速,软起动的功能,而且具有功率因数补偿的功能。
结束语:
我们这次装置AMB-HV1系列高压变频器一次调试成功,说明安邦信的高压变频器具有很高的可靠性,高压变频器的成功运行,不仅为企业带来了节能效益,减少了设备维修,而且提高了供水系统的自动化水平。可以说高压变频调速为企业节能降耗,提高经济效益开掘了新途径。
参考文献:
1、安邦信高压变频器AMB——HVI使用说明书深圳市安邦信电子有限公司

0 条回复

暂无讨论,说说你的看法吧!

 回复

你需要  登录  或  注册  后参与讨论!