微细加工
zhoucljob · 2010-05-22 08:47 · 41306 次点击
目录
简介
特点
发展状况
工艺产品
发展前景
微细机床
关键技术
前沿关键技术
微细切削加工
微细模具加工
简介
微细加工技术
微细加工技术是精密加工技术的一个分支,面向微细加工的电加工技术,激光微孔加工、水射流微细切割技术等等在发展国民经济,振兴我国国防事业等发面都有非常重要的意义,这一领域的发展对未来的国民经济、科学技术等将产生巨大影响,先进国家纷纷将之列为未来关键技术之一并扩大投资和加强基础研究与开发。所以我们有理由有必要加快这一领域的发展和开发进程。
微细加工技术应满足下列功能:
1)为达到很小的单位去除率(UR),需要各轴能实现足够小的微量移动,对于微细的机械加工和电加工工艺,微量移动应可小至几十个纳米,电加工的UR最小极限取决于脉冲放电的能量。
2)高灵敏的伺服进给系统,它要求低摩擦的传动系统和导轨主承系统以及高精度跟踪性能的伺服系。
3)高平稳性的进给运动,尽量减少由于制造和装配误差引起的各轴的运动误差。
4)高的定位精度和重复定位精度。
5)低热变形结构设计。
6)刀具的稳固夹持和高的重复夹持精度。
7)高的主轴转速及极低的动不平衡。
8)稳固的床身构件并隔绝外界的振动干扰。
9)具有刀具破损和微型钻头折断的敏感的监控系统。
特点
微细加工技术特点
微细加工技术是指加工微小尺寸零件的生产加工技术。从广义的角度来讲,微细加工包括各种传统精密加工方法和与传统精密加工方法完全不同的方法,如切削技术,磨料加工技术,电火花加工,电解加工,化学加工,超声波加工,微波加工,等离子体加工,外延生产,激光加工,电子束加工,粒子束加工,光刻加工,电铸加工等。从狭义的角度来讲,微细加工主要是指半导体集成电路制造技术,因为微细加工和超微细加工是在半导体集成电路制造技术的基础上发展的,特别是大规模集成电路和计算机技术的技术基础,是信息时代微电子时代,光电子时代的关键技术之一。
微小尺寸和一般尺寸加工是不同的,其不同点主要表现在以下几个方面:
1、精度的表示方法
在微小尺寸加工时,由于加工尺寸很小,精度就必须用尺寸的绝对值来表示,即用取出的一块材料的大小来表示,从而引入加工单位尺寸的概念。
2、微观机理
以切削加工为例,从工件的角度来讲,一般加工和微细加工的最大区别是切屑的大小。一般为金属材料是由微细的晶粒组成,晶粒直径为数微米到数百微米。一般加工时,吃刀量较大,可以忽略晶粒的大小,而作为一个连续体来看待,因此可见一般加工和微细加工的机理是不同的。
3、加工特征
微细加工和超微细加工以分离或结合原子、分子为加工对象,以电子束、技工束、粒子束为加工基础,采用沉积、刻蚀、溅射、蒸镀等手段进行各种处理。
发展状况
微细加工技术发展
在超精密加工技术领域起步最早和技术领先的国家是美国,其次是日本和欧洲的一些国家。美国超精密加工技术的发展得到了政府和军方的财政支持,近年,美国执行了"微米和纳米级技术"国家关键技术计划,国防部陆、海、空三军组成了特别委员会,统一协调研究工作。美国至少有30多个厂家和研究单位研制和生产各种超精密加工机床,国家劳伦斯.利佛摩尔实验室、联合碳化物公司、摩尔公司、杜邦公司等在国际上均久负盛名。美国最早研制了能加工硬脆材料的6轴数控超精密研磨抛光机;联合碳化物公司开发了直径为800mm的非球面光学零件的超精密加工机床;劳伦斯.利佛摩尔实验室还开发了能加工陶瓷、硬质合金、玻璃和塑料等难加工材料的超精密切削机床,在半导体工业、航空工业和医疗器械工业中投入使用;珀金-埃尔默等公司用超精密加工技术加工各种军用红外零部件。
日本对超精密技术的发展也十分重视,70年代初,日本成立了超精密加工技术委员会,制定了技术发展规划,成为此项技术发展速度最快的国家。日本现有20多家超精密加工机床研制公司,重点开发民用产品所需的加工设备并力图使设备系列化,成批生产了多品种商品化的超精密加工机床。在超精密切削技术发展比较成熟后,日本已将黑色金属、陶瓷和半导体功能材料的超精密加工技术作为重要的研究开发项目。日本的研究创新意识强,不是单纯地模仿国外的做法,而是积极地利用外国技术并结合本国特点和生存环境,走出了一条自己的发展道路。
欧洲等国也将超精密加工技术的发展放在重要位置,60年代起英国开始研究超精密加工技术,克兰菲尔德大学精密工程研究所相继研制出能加工大型非球面反射镜的数控金刚石立式车床、加工大型非对称结构光学零件的数控超精密磨床、研制了脆性材料的超精密磨削工艺。现已成立了国家纳米技术战略委员会,正在执行国家纳米技术研究计划。德国和瑞士也有比较强的超精密加工能力。1992年后,欧洲实施了一系列的联合研究与发展计划,加强和推动超精密加工技术的发展。超精密车削、磨削和研磨是已经发展成熟并大量应用的加工技术。日本开发了外圆和平面等多种类型的研磨机,美国也研制成功了加工陀螺零件的球形研磨机。
微细加工技术产品
另外,国外还大力发展了超精密抛光技术,以获得高的表面质量。美、日、英等国投入了大量资金和人力开发了离子束抛光工艺,以加工高精度的光学器件。美国还研制了边抛光边测量的离子束抛光机,抛光非球面镜的精度达λ/50。纳米级制造技术是超精密加工技术的顶峰,其研究需要有雄厚的技术基础和丰厚的物质条件,美国、日本和英国正在进行一些研究项目,包括聚焦电子束曝光、准分子激光蚀刻和扫描隧道显微镜纳米加工技术等。聚焦电子束曝光可通过计算机控制绘制出任意形状的图形,而且不损伤材料。准分子激光束通过与被加工材料表面起直接反应进行蚀刻,没有对加工部位的照射损伤和放电破坏,可达到纳米级的蚀刻精度。扫描隧道显微镜技术是利用扫描隧道显微镜探针的尖端俘获单个原子或单个分子,并向被加工表面传输,或者从被加工表面剥离单个或成团的原子和分子,从而形成所需的纳米级结构。美国和日本都已掌握了此项技术,在金属晶体或非金属晶体表面制造出了单个原子宽的线条和图形。该技术的显著优点是可适应多种加工环境,在高真空中、空气中、金属有机物气体中或溶液中都能在硅、砷化镓等电子材料、石英、陶瓷、金属和非金属材料上加工出纳米级的线条和图形,为航空微电子元器件和微机电系统的发展提供了技术支持。
最早开发的复合超精密加工技术是超精密振动金刚石刀具切削工艺,美国宇航动力集团采用该工艺加工了激光陀螺玻璃腔体,日本加工了平面和圆度达0.1μm的柱形零件。近年来,复合超精密加工技术更有了长足发展,日本理化研究所开发的在线电解修整复合磨削技术,能高效磨削球面、非球面和平面透镜等高硬度和高脆性电子和光学材料的功能零件,以及塑性金属零件,尺寸和形状精度达亚微米,表面粗糙度达纳米级。如:采用该技术加工镀膜SiC材料的球面、非球面和平面透镜等光学零件,直径100mm、曲率半径2000mm的球面透镜磨削后的形状精度为0.2μm,表面粗糙度值为Ra0.0076μm;200mm×200mm的平面透镜磨削后,在Φ150mm范围内测量的平面度为0.6μm,表面粗糙度值为Ra0.006μm。等离子化学气化加工和流体抛光技术也是目前国外开发的比较实用的加工技术,主要针对电子和光电等功能材料零件的超精密加工,可加工出任意形状的零件。
目前,采用等离子化学气化加工技术已制成了纳米级精度和表面无缺陷的非球面透镜,加工效率接近于机械加工的水平。采用流体抛光技术可获得深度均匀的矩形窄缝、有抛物线形相交截面的半圆柱体。超精密加工技术在发达国家已有近40年的发展历史,其生命力不仅在于包括航空技术在内的高科技发展对它的需求,而且在于它综合利用了高科技进步的成果,更重要的是在利用这些成果的基础上有所创新,将其以新颖的构思巧妙地加以重组不断获得新的设备和工艺技术,模块式超精密加工机床的诞生和复合超精密加工技术的出现就是很好的例证。
工艺产品
微细加工技术工艺
1、中药精细加工(气流粉碎技术)
气流粉碎是高速碰撞与密闭粉碎,物料间彼此碰撞的概率大,粉尘也无泄漏。粉碎是中药材加工和中药制剂生产工艺中的重要环节。中药自古就有"水飞"、"挫"、"捣"等精细加工方法,其主要应用对象是矿物药、贵重药和具有特殊性质的中药,但处理量极少。我国现有中药加工传统工艺采用锤击式、球磨式、万能磨粉式、流能式截切式、滚筒式多种粉碎机械,由于粉碎方式不同,对于粉未的粒度、出粉率、以及有效成分的保存等方面都有一定局限,且采用非密闭制粉,造成粉尘泄漏大,收粉率不高,对于具有特殊性质的物料如热敏性、低融点、成分易破坏药材的处理,以及提高收粉率方面仍未得到根本的解决。气流粉碎机的发展为中药的精细加工提供了可靠的保证。最新一代的CF系列流化床式气流粉碎机是在消化吸收国内外同类设备的技术的基础上产生的,集世界上先进的多喷管技术、流化床技术、卧式分级技术于一身,实现了流场多元化、料层液态化与分级卧式化的优化体系,体现了气动技术应用于超细粉碎和分级工艺中的最新成果。为该技术应用于中药的精细加工提供了技术保证。
2、激光微细加工系统
激光微细加工系统可对塑料、玻璃、陶瓷及金属薄膜等多种材料进行加工,精度可以做到微米级。其产品广泛应用于半导体及微电子加工、生物医疗器械生产、计算机制造业、MEMS、MST、电子通讯等各个领域。系统组成包括有:激光器、光路系统、调节平台、控制器,能满足您不同的加工要求。同时为您提供从紫外到红外(Excimer、Solidstate、CO2)广泛光谱范围内的激光材料处理技术。
3、飞秒激光超微细加工(femtosecondlasermicromachining)
飞秒激光用于超微细加工是飞秒激光用于超快现象研究和超强现象研究之外的又一个飞秒
激光技术的重要的应用研究领域。与飞秒超快和飞秒超强研究有所不同的是飞秒激光超微细加
工与先进的制造技术紧密相关,对某些关键工业生产技术的发展可以起到更直接的推动作用。飞秒激光超微细加工是当今世界激光、光电子行业中的一个极为引人注目的前沿研究方向。用激光超短脉冲进行材料处理(或加工)不仅可以改进现有激光材料微加工的不足之处,而且还可以完成传统激光加工无法做到的事情。飞秒激光能够具备极高的三维光子密度,对种材料实现逐层、微量加工;飞秒激光加工的热影响区域(Heataffectedzone)极小,并且不存在长脉冲激光或连续激光加工中的等离子体屏蔽效应,这就使得其能量利用效率和加工精度都非常之高。当用飞秒激光加工透明介质材料时,加工过程不受材料本身的线性吸收系数的影响,同时,对材料表面或内部的缺陷不敏感。此外,从光和物质相互作用的角度来看,飞秒激光加工涉及的主要是多光子电离的过程,在机理上不同于传统激光加工。因此,飞秒激光进行微加工有固定的加工阈值,加工和不加工有着明显的区分,因此加工过程重复性好。可以预计飞秒激光超微细加工技术在微电子、生物芯片和新型材料等科学技术领域中都将有广泛应用。飞秒激光超微细加工中的“加工”二字具有广义性。它可以是对物质在原子、分子水平上的操纵(manipulation),或者是对物质在微小区域内某些重要属性的改变与处理(processing),而并非只是通常人们所理解的“机械加工”。飞秒激光超微细加工不仅具有通常基础应用研究的特征,而且涉及到激光物理、原子分子物理、激光束光学、材料科学、热动力学、等离子体物理、流体气体力学等广泛知识,属于跨学科的研究。飞秒激光超微细加工往往是在极小的空间、极短的时间和极端的物理条件下对物质进行加工的。可以说,“超微”与“超快”的组合是飞秒激光超微细加工的独特之处。一定强度的飞秒激光可以用于对任何材料的精细加工,从金刚石到生物透析膜,从烈性炸药到MEMs器件等都有实验结果报道
微细加工技术工艺
4、“龙芯2号”
“龙芯2号”是国家“863”计划和中国科学院知识创新工程共同支持的重大项目,其目标是在2004年中期,用0.18微米的工艺,实现主频500MHz、SPECCPU2000测试分值超过300的64位通用CPU芯片。SPEC分值的指标意味着这款芯片的实际性能与1GHz的奔腾4差不多,是龙芯1号实测性能的10-15倍。为了达到这个目标,龙芯2号采用了先进的四发射超标量体系结构(即每个时钟周期可以同时执行4条指令)、5个强大的功能部件、乱序执行机制、动态存储访问机制及更大的片上高速缓存。在具体实现方面,龙芯2号逐步采用全定制的设计技术,并通过多次流片,不断验证新的功能,不断提高时钟频率和实际性能。
5、基因芯片技术
基因芯片技术是近年来快速发展的高技术领域前沿热门课题。国内急需且市场前景看好的生物芯片制作和生物芯片检测关键仪器有——激光共聚焦生物芯片扫描仪和CCD生物芯片检测仪CCD生物芯片扫描仪利用CCD摄像原理的图象检测系统,具有结构简单、体积小、检测速度快、成本低。主要关键技术及创新点为:提高CCD接收灵敏度和降低噪声技术;提高CCD动态响应技术;多波长激发光源、聚焦、准直和滤波技术;氙灯光源控制技术;照明均匀性控制技术;图象平滑滤波、自适应背景确定、样品斑点识别、数据提取、存贮和显示技术。
激光共聚焦生物芯片扫描仪采用激光作激发光源,采用PMT检测荧光信号,因而具有较高的灵敏度,可以完成较大面积的扫描,并且具有很高的分辨率。主要关键技术及创新点为:不同波长多个激发激光器系统应用设计和光束缩小、定向技术;激光窄带滤光片设计、镀膜制备技术,高灵敏度荧光分子探测技术,高精度快速扫描技术,整机控制和智能界面操作技术;数据判读、处理和显示软件技术。
6、i线深度刻蚀曝光光刻机
i线深度刻蚀曝光光刻机在微电子、微光学、微机械系统、红外器件、准LIGA及声表面波等器件的研制和生产中都有应用前景。该机在深度光刻中具有突出特色,采用1000W大功率汞灯照明电源系统,采用球气浮自动调平调焦技术及高倍率双视显微镜与CCD图像对准技术。控制系统采用压电陶瓷自动闭环精确设定曝光间隙,自动分离对准间隙,具备接触和绝对不接触曝光方式和定时、定剂量两种曝光剂量设定功能。采用特殊蝇眼透镜平滑衍射效应提高光刻分辨率等先进技术。光刻分辨率达0.8μm-1μm,线条侧壁陡度达85°,对深层光刻线条高宽比,孤立线条可达60:1,等间距线条优于20:1。具有分辨力高、套刻准、线条陡直、线条高宽比大、曝光速度快等特点。
发展前景
微细加工发展前景
如果进入微观世界,能够捕获一个或多个单原子,然后让它们重新排列组合,那么就会导致物质本身发生某些变化,而这些变化将会对未来许多领域,及人类生活产生巨大影响。例如,我们把组成水分子的氢和氧分开,二者都是可以燃烧的。小的分子,只有足球体积的几亿分之一,用机械方法,几乎是不可能捉住它,分子又是由原子组成的,操纵一个原子,就更难了,而光可以做到这一点。一束极细的激光,产生光子流,其动量转移给物体,形成光压,再通过适当的光场分布,可以把那种极小的原子俘获在一定的位置,并可方便把移动它。实际上这就实现了对原子的操作。
控制原子或分子的手段叫光镊,对分子原子进行切割雕刻使用的是光刀。一种材料通过改变它的分子结构及原子排列取向,进而形成新布局,那么,它的性能就会发生很大变化,这样未来我们所制造出来的电子器件,与现在相比,其功能相同,而体积则要小多少万倍。
在以后的几十年,随着原子尺度加工技术不断完善和提高,就会出现多种单原子器件和新型分子材料,如果把它们用制造机器人,最小型的就可以爬进人的血管,进行各种各样的治疗手术。同样,用来制造卫星,卫星的体积,也会大大减少,到那时人类可能一次发射成千上万颗用于各方面的卫星,而到目前为止,人类在以往几十年间,一共才把几千颗卫星送上天。通过科学分析和计算,改变了原子分子结构的新型材料,具有更高的强度,更轻的重量,更好的绝热和耐高温性能,在空间领域,用来做太空船的外壳,引擎或其它方面,太空船会变得更轻、更快,能够承受更为恶劣的环境,它会带着人类走的更远,会征服更多的星球。在日常生活中,我们所看到的,用激光刻录的光盘,已经可以储存较多的信息了,但这只是一种新的输入方式,而光盘本身做为一种材料,容量还是有限的,如增加它的原子分子密度和改变它们取向,那么未来就可以把现在成千上万强光盘的信息,放进象手表大小的空间里。一座大型图书馆全部书籍可容进一张光盘内,你拥有了这张光盘,就拥有了一座图书馆。
在生物领域,各种各样的原子和分子,以它特有的方式组合在一起,由此产生了世界万物,如果利用光镊光刀,把生命体的某些原子取出,然后,按照科学规律,重新组合,会出现什么样的结果,科学乐观的预测,这样就有可能创造出具有生命力的新物质,而它的存在形成,与我们常见的动物、植物和生物会有所不同。同样,利用光刀光镊,修复DNA和某些有缺陷的遗传基因,从而可以克服困扰人类的多种顽症。
21世纪,人类进入微观世界。在原子分子尺度上,对物质进行操作和加工,无疑会展现出一种相当美好的前景,并引起各方面的广泛重视。
微细机床
微细加工机床
1、概念
微型机械加工或称微型机电系统或微型系统是只可以批量制作的、集微型机构、微型传感器、微型执行器以及信号处理和控制电路、甚至外围接口、通讯电路和电源等于一体的微型器件或系统。
其主要特点有:体积小(特征尺寸范围为:1μm-10mm)、重量轻、耗能低、性能稳定;有利于大批量生产,降低生产成本;惯性小、谐振频率高、响应时间短;集约高技术成果,附加值高。微型机械的目的不仅仅在于缩小尺寸和体积,其目标更在于通过微型化、集成化、来搜索新原理、新功能的元件和系统,开辟一个新技术领域,形成批量化产业。微型机械加工技术是指制作为机械装置的微细加工技术。微细加工的出现和发展早是与大规模集成电路密切相关的,集成电路要求在微小面积的半导体上能容纳更多的电子元件,以形成功能复杂而完善的电路。电路微细图案中的最小线条宽度是提高集成电路集成度的关键技术标志,微细加工对微电子工业而言就是一种加工尺度从微米到纳米量级的制造微小尺寸元器件或薄模图形的先进制造技术。
目前微型加工技术主要有基于从半导体集成电路微细加工工艺中发展起来的硅平面加工和体加工工艺,上世纪八十年代中期以后在LIGA加工(微型铸模电镀工艺)、准LIGA加工,超微细加工、微细电火花加工(EDM)、等离子束加工、电子束加工、快速原型制造(RPM)以及键合技术等微细加工工艺方面取得相当大的进展。微型机械系统可以完成大型机电系统所不能完成的任务。微型机械与电子技术紧密结合,将使种类繁多的微型器件问世,这些微器件采用大批量集成制造,价格低廉,将广泛地应用于人类生活众多领域。可以预料,在本世纪内,微型机械将逐步从实验室走向适用化,对工农业、信息、环境、生物医疗、空间、国防等领域的发展将产生重大影响。微细机械加工技术是微型机械技术领域的一个非常重要而又非常活跃的技术领域,其发展不仅可带动许多相关学科的发展,更是与国家科技发展、经济和国防建设息息相关。微型机械加工技术的发展有着巨大的产业化应用前景。
微细加工刀具
2、国外发展现状
1959年,RichardPFeynman(1965年诺贝尔物理奖获得者)就提出了微型机械的设想。1962年第一个硅微型压力传感器问世,气候开发出尺寸为50~500μm的齿轮、齿轮泵、气动涡轮及联接件等微机械。1965年,斯坦福大学研制出硅脑电极探针,后来又在扫描隧道显微镜、微型传感器方面取得成功。1987年美国加州大学伯克利分校研制出转子直径为60~12μm的利用硅微型静电机,显示出利用硅微加工工艺制造小可动结构并与集成电路兼容以制造微小系统的潜力。
微型机械在国外已受到政府部门、企业界、高等学校与研究机构的高度重视。美国MIT、Berkeley、Stanford\AT&T和的15名科学家在上世纪八十年代末提出"小机器、大机遇:关于新兴领域--微动力学的报告"的国家建议书,声称"由于微动力学(微系统)在美国的紧迫性,应在这样一个新的重要技术领域与其他国家的竞争中走在前面",建议中央财政预支费用为五年5000万美元,得到美国领导机构重视,连续大力投资,并把航空航天、信息和MEMS作为科技发展的三大重点。美国宇航局投资1亿美元着手研制"发现号微型卫星",美国国家科学基金会把MEMS作为一个新崛起的研究领域制定了资助微型电子机械系统的研究的计划,从1998年开始,资助MIT,加州大学等8所大学和贝尔实验室从事这一领域的研究与开发,年资助额从100万、200万加到1993年的500万美元。1994年发布的《美国国防部技术计划》报告,把MEMS列为关键技术项目。美国国防部高级研究计划局积极领导和支持MEMS的研究和军事应用,现已建成一条MEMS标准工艺线以促进新型元件/装置的研究与开发。美国工业主要致力于传感器、位移传感器、应变仪和加速度表等传感器有关领域的研究。很多机构参加了微型机械系统的研究,如康奈尔大学、斯坦福大学、加州大学伯克利分校、密执安大学、威斯康星大学、老伦兹得莫尔国家研究等。加州大学伯克利传感器和执行器中心(BSAC)得到国防部和十几家公司资助1500万元后,建立了1115m2研究开发MEMS的超净实验室。
日本通产省1991年开始启动一项为期10年、耗资250亿日元的微型大型研究计划,研制两台样机,一台用于医疗、进入人体进行诊断和微型手术,另一台用于工业,对飞机发动机和原子能设备的微小裂纹实施维修。该计划有筑波大学、东京工业大学、东北大学、早稻田大学和富士通研究所等几十家单位参加。
欧洲工业发达国家也相继对微型系统的研究开发进行了重点投资,德国自1988年开始微加工十年计划项目,其科技部于1990~1993年拨款4万马克支持"微系统计划"研究,并把微系统列为本世纪初科技发展的重点,德国首创的LIGA工艺,为MEMS的发展提供了新的技术手段,并已成为三维结构制作的优选工艺。法国1993年启动的7000万法郎的"微系统与技术"项目。欧共体组成"多功能微系统研究网络NEXUS",联合协调46个研究所的研究。瑞士在其传统的钟表制造行业和小型精密机械工业的基础上也投入了MEMS的开发工作,1992年投资为1000万美元。英国政府也制订了纳米科学计划。在机械、光学、电子学等领域列出8个项目进行研究与开发。为了加强欧洲开发MEMS的力量,一些欧洲公司已组成MEMS开发集团。
目前已有大量的微型机械或微型系统被研究出来,例如:尖端直径为5μm的微型镊子可以夹起一个红血球,尺寸为7mm×7mm×2mm的微型泵流量可达250μl/min能开动的汽车,在磁场中飞行的机器蝴蝶,以及集微型速度计、微型陀螺和信号处理系统为一体的微型惯性组合(MIMU)。德国创造了LIGA工艺,制成了悬臂梁、执行机构以及微型泵、微型喷嘴、湿度、流量传感器以及多种光学器件。美国加州理工学院在飞机翼面粘上相当数量的1mm的微梁,控制其弯曲角度以影响飞机的空气动力学特性。美国大批量生产的硅加速度计把微型传感器(机械部分)和集成电路(电信号源、放大器、信号处理和正检正电路等)一起集成在硅片上3mm×3mm的范围内。日本研制的数厘米见方的微型车床可加工精度达1.5μm的微细轴。
微细加工产品
3、中国现状
我国在科技部、国家自然基金委,教育部和总装备部的资助下,一直在跟踪国外的微型机械研究,积极开展MEMS的研究。现有的微电子设备和同步加速器为微系统提供了基本条件,微细驱动器和微型机器人的开发早已列入国家863高技术计划及攀登计划B中。已有近40个研究小组,取得了以下一些研究成果。广东工业大学与日本筑波大学合作,开展了生物和医用微型机器人的研究,已研制出一维、二维联动压电陶瓷驱动器,其位移范围为10μm×10μm;位移分辨率为0.01μm,精度为0.1μm,正在研制6自由度微型机器人;长春光学精密机器研究所研制出直径为Φ3mm的压电电机、电磁电机、微测试仪器和微操作系统。上海冶金研究所研制出了微电机、多晶硅梁结构、微泵与阀。上海交通大学研制出Φ2mm的电磁电机,南开大学开展了微型机器人控制技术的研究等。
我国有很多机构对多种微型机械加工的方法开展了相应的研究,已奠定了一定的加工基础,能进行硅平面加工和体硅加工、LIGA加工、微细电火花加工及立体光刻造型法加工等。
4、技术发展趋势
微型机械加工技术的发展刚刚经历了十几年,在加工技术不断发展的同时发展了一批微小器件和系统,显示了巨大生命力。作为大批量生产的微型机械产品,将以其价格低廉和优良性能赢得市场,在生物工程、化学、微分析、光学、国防、航天、工业控制、医疗、通讯及信息处理、农业和家庭服务等领域有着潜在的巨大应用前景。当前,作为大批量生产的微型机械产品如微型压力传感器、微细加速度计和喷墨打印头已经占领了巨大市场。目前市场上以流体调节与控制的微机电系统为主,其次为压力传感器和惯性传感器。1995年全球微型机械的销售额为15亿美元,有人预计到2002年,相关产品值将达到400亿美元。显然微型机械及其加工技术有着巨大的市场和经济效益。
微型机械是一门交叉科学,和它相关的每一技术的发展都会促使微型机械的发展。随着微电子学、材料学、信息学等的不断发展,微型机械具备了更好的发展基础。由于其巨大的应用前景和经济效益以及政府、企业的重视,微型机械发展必将有更大的飞跃。新原理、新功能、新结构体系的微传感器、微执行器和系统将不断出现,并可嵌入大的机械设备,提高自动化和智能水平。
微型机械加工技术作为微型机械的最关键技术,也必将有一个大的发展。硅加工、LIGA加工和准LIGA加工正向着更复杂、更高深度适合各种要求的材料特性和表面特性的微结构以及制作不同材料特别是功能材料微结构、更易于与电路集成的方向发展,多种加工技术结合也是其重要方向。微型机械在设计方面正向着进行结构和工艺设计的同时实现器件和系统的特性分析和评价的设计系统的实现方向发展,引入虚拟现实技术。
我国在微型加工技术发展的优先发展领域是生物学、环境监控、航空航天、工业与国防等领域,建设好几个有世界先进水平的微型机械研究开发基地,同时亦重视微观尺度上的新物理现象和新效应的研究,加速我国微型机械的研究与开发,迎接二十一世纪技术与产业革命的挑战。
关键技术
微细加工关键技术
微型机械是一个新兴的、多学科交叉的高科技领域,面临许多课题,涉及许多关键技术。当一个系统的特征尺寸达到微米级和纳米级时,将会产生许多新的科学问题。例如随着尺寸的减少,表面积与体积之比增加,表面力学、表面物理效应将起主导作用,传统的设计和分析方法将不再适用。为摩擦学、微热力这等问题在微系统中将至关重要。微系统尺度效应研究将有助于微系统的创新。
微型机械不是传统机械直接微型化,它远超出了传统机械的概念和范畴。微型机械在尺度效应、结构、材料、制造方法和工作原理等方面,都与传统机械截然不同。微系统的尺度效应、物理特性研究、设计、制造和测试研究是微系统领域的重要研究内容。
在微系统的研究工作方面,一些国内外研究机构已在微小型化尺寸效应,微细加工工艺、微型机械材料和微型结构件、微型传感器、微型执行器、微型机构测量技术、微量流体控制和微系统集成控制以及应用等方面取得不同程度的阶段性成果。微型机械加工技术是微型机械发展的关键基础技术,其中包括微型机械设计微细加工技术、微型机械组装和封装技术、为系统的表征和测量技术及微系统集成技术。
前沿关键技术
微细加工技术
1、微系统设计技术
主要是微结构设计数据库、有限元和边界分析、CAD/CAM仿真和拟实技术、微系统建模等,微小型化的尺寸效应和微小型理论基础研究也是设计研究不可缺少的课题,如:力的尺寸效应、微结构表面效应、微观摩擦机理、热传导、误差效应和微构件材料性能等。
2、微细加工技术
主要指高深度比多层微结构的硅表面加工和体加工技术,利用X射线光刻、电铸的LIGA和利用紫外线的准LIGA加工技术;微结构特种精密加工技术包括微火花加工、能束加工、立体光刻成形加工;特殊材料特别是功能材料微结构的加工技术;多种加工方法的结合;微系统的集成技术;微细加工新工艺探索等。
3、微型机械组装和封装技术
主要指沾接材料的粘接、硅玻璃静电封接、硅硅键合技术和自对准组装技术,具有三维可动部件的封装技术、真空封装技术等新封装技术的探索。
4、微系统的表征和测试技术
主要有结构材料特性测试技术,微小力学、电学等物理量的测量技术,微型器件和微型系统性能的表征和测试技术,微型系统动态特性测试技术,微型器件和微型系统可靠性的测量与评价技术。
微细切削加工
微细切削加工
结构和零件的微型化是技术领域的发展趋势之一,开发经济上可行的微细加工技术对于微型技术的发展有重要意义。目前,产业化的微细制造技术主要用在半导体工业,它们仅仅对大批量生产是经济的;在印刷制版术行业里使用的微细制造技术对所加工的几何形状及所能加工的材料又有很大的局限性。与这两种制造技术比较,微细切削加工可以弥补上述的缺点,因此,开发微细切削技术是微细制造技术的新领域。
微细切削加工的第一批装置是美国在60年代末开发的,主要用于加工光学件的表面,并由此诞生了超精加工技术。目前,在光学、电子和机械零件加工中达到了微米和亚微米的精度和几十个纳米的表面粗糙度。在八十年代末,德国的卡鲁斯厄研究中心把微细切削用于在微型元件的表面上加工微细的纹理,制造微型热交换器:它们对一个圆筒上的铜箔或铝箔用单晶金刚石制造的刀尖进行切槽,最终做成一个微型的、效率很高的热交换器。直到九十年代,微细切削主要是用金刚石刀具加工有色金属零件。随着微型技术应用领域的不断扩大,要求能加工更多样化的材料,尤其是对钢和陶瓷的微细切削,成为微细切削技术的发展方向。
1、金刚石--近乎理想的切削材料
在超精加工领域,单晶金刚石刀具几乎是唯一得到实用的刀具。金刚石摩擦系数低,导热率高,这对切削过程很利;它还有很高的硬度和可加工出接近原子尺寸级的锋利刃口,而制作锋利的刃口是微细切削领域中必须解决的关键技术。一个亚微米级的锋利刃口可以加工出几纳米数量级的表面粗糙度。锋利的刃口及很低的摩擦系数,可大大减小切削力,这有利于微细切削加工的精度,也降低了对超精加工机床刚性的要求。
金刚石刀具适合加工铝、纯铜、黄铜以及铜镍合金等。铜镍合金有很高的硬度,在加工时可获得极佳的表面质量。金刚石不适合加工黑色金属,为了使金刚石能够加工钢,正在开发一些装置,有一个装置效果很好。它把一个超声振动叠加在刀具的运动上,切削时使刀具的接触时间大大减少,从而降低了切削温度,抑制了金刚石向石墨的转化。
微细切削来源于普通切削
微细切削的知识实际上是从普通的切削加工中获得的,包括车、铣、钻、磨,在个别情况下,微细加工也用锯削或刨削。目前研究最多、最成熟的是超精车削。例如制作压制菲涅耳透镜的有色金属模具或制作表面粗糙度的样块。通过叠加一个由压电晶体驱动的高频振动到进给机构里,在与主轴回转频率和振动适当同步时,能产生不旋转对称的加工表面,达到磨光的镜面。
在微细加工中,铣削也被认为是最柔性的加工方法。用单齿的金刚石圆盘铣刀加工槽与前面所述的在薄膜上车槽比较,可以加工出各种角度交叉的。可用于制造压制光学栅格结构的模具,如每毫米100线。已商品化的圆盘铣刀最小宽度约100μm。
用金刚石制造的带柄铣刀,直径约300μm,也已经商品化。这种铣刀的结构为通用的直槽单齿铣刀,也可制成有端刃的雕刻刀,它特别适合加工只有几微米厚的隔板。这种槽铣刀的缺点是最小的槽宽取决于刀具的直径和装夹的精度。
微细加工技术
2、钢是未来微细切削技术加工的对象
微细切削技术至今还局限于加工硅或非金属材料,而各种人工合成材料已经可用成形工艺进行加工(包括硬而脆的和软而韧的),因此,下一步对钢的加工就显得很有必要。钢的微细切削加工研究在德国始于九十年代,至今仍处于研究阶段。其主要应用领域在工模具行业,模具的耐磨性是成形加工经济性的重要前提,尤其当模具的结构有很高的深度--宽度比时,其材料的抗弯强度对成形加工的可靠性有决定性的意义,有时甚至关系到是否能够成形。
钢的微细切削不能用金刚石刀具,主要用硬质合金铣刀。硬质合金是由很多晶粒组成的烧结体,其晶粒的大小决定刀刃的微观锋利程度。因此,不能加工出像用金刚石刀具所获得的表面质量,但由于价格低并能加工钢,因此目前仍然是对钢进行微细切削的主要刀具。
为了有锋利的刀刃,通常采用钨钴类的超细颗粒硬质合金。硬质合金刀具的晶粒尺寸为0.5μm~1.0μm,其切削刃圆弧半径为几微米。为了开发钢的微细切削技术,德国卡鲁斯厄大学的机床和制造技术学院首先进行了硬质合金圆盘铣刀的试验,刀具宽度为0.15mm。用铣刀作十字交叉的切削,工件硬度为52HRC的调质钢,加工出如图5所示的高1mm截面0.2×0.2mm2的一排排作为合成材料或粉末注射材料模具的棱柱。
适合微细切削的硬质合金带柄铣刀在工业上已被广泛采用,有涂层的和不涂层的,最小直径为0.1mm,个别工具制造商可生产直径为50μm的铣刀。为避免刀具意外的折断和提前磨损,在加工像钢这样的硬材料时,要注意加工过程
的安全和机床的平稳,所以要求机床具有足够的刚性和动态性能,采用高的切削速度和中等的每齿进给量,以保证刀具的切入。
硬质合金微型铣刀的制造存在着一些难题,即除了要在不均质的刀具材料上加工出锋利的刃口外,还要对直径为零点几毫米的铣刀进行磨削,使之承受磨削力的作用,为解决这一难题,可选择一种不产生切削力的加工方法(如激光加工)。用铣削的方法可加工出形状复杂的表面,也可加工用工具钢制造的100μm以下的零件。
磨削是专门用于硬而脆的材料的加工,使微型元件能用玻璃、陶瓷、硅或硬质合金制造。目前用于硅片切割的零点几毫米宽的砂轮已商品化,通常用经镀镍或铬的金刚石磨料作砂轮的材料,最近还开发了CVD涂覆金刚石的硬质合金成形砂轮。
与刀具相似,砂轮也有用作成形砂轮的盘状砂轮和通用性很好的指状砂轮,后者可加工微细的任意形状表面,目前在研究部门使用的指状砂轮的最小直径为50μm。
微细加工技术
3、用磨削加工硬而脆的材料
为了在硬而脆的材料上(例如单晶硅)加工微孔,除了通常用电镀法制造的直径为0.9mm、金刚石颗粒为D91μm的微型空心钻头外,德国Brauschweig技术大学新开发了同样直径的CVD金刚石钻头,其金刚石晶粒的尺寸为4μm~8μm。尽管有较大的切削力,用这种新型钻头在单晶硅上钻了55个盲孔,质量全部合格。这种盲孔钻头可以在指状砂轮加工零件的封闭式型腔前钻引导孔。电镀的金刚石空心钻头较适合在板材上加工通孔,但在试验中,在孔的钻穿那一面沿着硅的晶轴方向出现了大于100μm的崩刃,在孔的钻入这一面边缘也有20μm~150μm的崩刃,这一问题有待进一步研究。
微细切削是微细加工工艺的一个重要延伸,尽管目前微细切削所能加工出的零件细节不及微细电加工所达到的程度,但它与激光刻蚀加工等技术一起可在各种各样的材料上加工任意的空间结构。此外,它比基于平板印刷的微细技术需要的设备少,也省去了昂贵的母板制造,总之,零件的微细切削加工对于经济地制作中等批量的微型构件有很大的优势。
微细模具加工
微细模具加工
随着微纳米科学技术的进步,产品不断向微型化方向发展。特徵尺寸为微米级的微机电系统应用越来越广,进而推动了微细加工技术的快速发展。
1、微型制件、微型模具的应用技术与市场前景
随着微纳米科技的进步,产品不断向微型化方向发展,特徵尺寸为微米级的微机电系统受到了人们的高度重视。微机电系统(MEMS,Micro-Electro-MechanicalSystems)技术是集微型传感器、执行器以及信号处理和控制电路、接口电路、通信和电源於一体的微型机电系统。
MEMS包括微型机构、微型传感器、微型执行器和相应的处理电路等几部分,是在融合多种微细加工技术、并在应用现代信息技术最新成果的基础上发展起来的高科技前沿学科。MEMS为美国叫法,在日本被称为微机械,在欧洲则被称作微系统。
近几年,MEMS已相继应用於精密机械、光电通讯、影像传输、生化医疗、信息储存等领域,如微齿轮、插头式光纤连接器、医学用微量泵、导光板、微透镜、内窥镜零件、微流控芯片、细胞培养用微型容器,以及旋转传感器中的衍射光栅等,其广泛应用值得期待。
目前对微制品的概念还没有准确的定义,从微注塑成形的角度,给出了微型制品的含义,即微型制品应具有以下特徵:整体结构尺寸微小,通常其单件重量仅为几毫克;具有表面微小结构,即制品总体尺寸仍为普通尺寸,但其局部细微结构的尺度为微米量级;微型精密零件,是指制品尺寸为任意的,但应有微米量级的尺寸精度。如果在尺寸和制造精度上加以限定,即微型模具拥有以下几个特徵:成形制件体积达到1立方毫米;微观尺寸从几微米到几百微米;模具表面粗糙度在0.1μm以下;模具制造精度从1μm到0.1μm。
预计从2010年开始,中国MEMS巿场增速将加快,2011年的增速有望达29.2%。
2、微型模具加工难点
微型模具并不一定指体积微小,传统的体积大但具有微结构特徵的模具也称作微型模具。微型模具的制造难点在於微小型腔或微小凸凹结构加工,而模具其它结构件的制造与普通模具基本一致。微小型腔的成形可在一个小体积的金属块上加工,然後把金属块作为一个镶块嵌入模板并进行整体组装,这不仅便於微小型腔的微细加工和镶块的更换,且能提高模具整体寿命。
传统的机械式加工方法不能加工尺寸太小或者微结构尺寸太小的微型模具,尺寸精度和表面粗糙度都达不到微型模具的设计要求。现在发展起来的光刻技术虽然能实现尺寸小精度高的要求,但光刻技术因其制造费用昂贵、加工周期长,工艺流程复杂等缺陷而限制了其广泛应用。
微细加工产品
3、微型模具加工技术发展快速种类繁多
微型模具加工技术经过近几年快速发展,种类比较繁多。按其加工原理不同可分为三大类:光制作技术,如LIGA技术、UV-LIGA技术、电子束光刻技术、激光加工技术;腐蚀技术,如刻蚀技术;微机械加工技术,如微细车削、微细铣削、微细磨削、微细电火花等传统加工法。
光制作技术主要应用於具有微米级微结构的零件加工,加工精度达10nm以下;微机械加工技术应用於具毫米级微结构的零件加工,加工精度100nm以下。
1)LIGA技术
LIGA技术是近年来发展起来的新型光制作技术,名称源於德文,意指为深度X射线刻蚀、电铸成型和塑料铸模等技术的完美结合。其主要工艺流程如下。
深度X射线刻蚀:利用同步辐射X射线在几百微米厚的光刻胶上刻蚀出较大高宽比的光刻胶图形,高宽比一般达到100。
电铸成型及制模:将金属从电极上沉积在底板的光刻胶图形的空隙里,直至金属填满整个光刻胶的图形空隙为止。实际上,这一过程是将光刻胶图形转化为相反结构的金属图形。此金属结构可作为最终产品,也可以作为批量复制的模具。
注模复制:将去掉基板和光刻胶的金属模壳附上带有注入孔的金属板,从注入孔向型腔中注入塑料,冷却後去掉模壳。在金属板上留下一个塑料结构,此塑料结构作为微制品。
与传统的其它微细加工技术相比,LIGA技术有许多优点:精度高,能达到亚微米级;可以得到高的深宽比结构,达几百以上;沿高度方向的直线性和垂直度非常好;适用於多种材料,如金属,陶瓷和聚合物。其缺点则是:需使用昂贵的同步辐射X射线,成本高;得到的形状是柱状,难以加工曲面和斜面的微器件;不能生成口小肚大的腔体。
2)UV-LIGA技术
昂贵的同步辐射X射线限制了LIGA技术的应用。而采用与其相似的工艺原理,探索低成本高深宽比的准LIGA技术应运而生,衍生出UV-LIGA技术、Laser-LIGA技术和Dem技术等。
适於中厚度的光刻胶的UV-LIGA技术已得到广泛应用,其技术实质是用深紫外光的深度曝光来替代LIGA技术的同步辐射X射线深度曝光。相比X射线,深紫外线的曝光深度要低很多,当曝光较厚的PMMA光刻胶(大於4μm)时需要采用多次曝光、多次显影的方法来实现。现在IBM公司研发出一种新型的负深紫外线光刻胶SU-8,能减少曝光次数,得到较好的曝光效果。下为该技术的主要工艺流程。
深度紫外线曝光:利用紫外线在SU-8光刻胶上刻蚀出光刻胶图形。
电铸成型及制模:将金属从电极上沉积在底板的光刻胶图形的空隙里,直至金属填满整个光刻胶的图形空隙为止,此金属结构作为批量复制的模具。
注模复制:用注塑成形方法在金属结构上复制出与金属微结构相反的塑料微结构制品。
据表1,UV-LIGA技术和LIGA技术相比,具有加工成本低、周期短的优势,但在加工深度、深宽比和侧壁垂直度等参数方面存在不足。对於型腔侧壁垂直度及深宽比要求不是很高时,它完全可以取代LIGA技术。
目前,UV-LIGA技术在型腔深度小於100μm的模具制作中取得成功的应用,逐步替代以往的传统机械加工方法。
微细加工机床
3)电子束光刻技术
电子束光刻技术是利用电子束作用在光刻胶上形成微纳结构的一种加工技术。
它需要一个产生电子束的曝光机,目前曝光机主要有两种类型:直写式和投影式。直写式曝光机将聚集的电子束直接打在表面涂有光刻胶的衬底上,不需要光学光刻工艺中昂贵的掩膜。而随着直写式电子束曝光机的小型化,直写式光刻技术在科研中的应用将越来越广泛。但是其局限性在於,电子束是扫描成像型的,生产率极低,远未达到光学光刻所能达到的40-100片/小时的生产率,很难适用於大规模批量生产。正因为如此,电子束光刻一般用於制作高精度掩膜。
4)刻蚀技术
所谓刻蚀技术就是用化学或者物理的方法有选择的从基片表面除去不需要材料的过程。其从机理上分为湿法和干法两类。湿法刻蚀是将硅片浸泡在可与被刻蚀薄膜进行反应的溶液中,用化学方法除去不需要部分的薄膜。
干法刻蚀是将被加工的基片置於等离子体中,在带有腐蚀性,具有一定能量粒子的轰击下,反应生成气态物质,去除被刻蚀薄膜,此种方法一般具有各向异性。
干法刻蚀的种类较多,根据其作用机理可分为物理刻蚀,化学刻蚀,物理-化学刻蚀三类。在干法刻蚀中,物理溅射作用越大,侧向刻蚀越小,各向异性越好,但是其选择性差,刻蚀速率低,对基片损伤大。干法刻蚀可以分为等离子体刻蚀,反应离子刻蚀,溅射刻蚀,离子束刻蚀,反应离子束刻蚀等。
5)微细车削
微细车削是加工回转类零件的有效方法。加工微型零件时要求有合理的微型化车床、状态监测系统、高速高回转精度主轴、高分辨率的伺服进给系统,且刀刃足够小、硬度足够高的车刀。相比普通车削,微细车削的车床和刀具更小,当然工件也更小。
日本通产省工业技术院在1996年研制出世界首台微型车床。该车床长32mm宽25mm高30.5mm,重仅100g;主轴电机额定功率1.5W,转速10000rpm。用其切割黄铜,进给方向的表面粗糙度Rz1.5μm,加工工件圆度2.5μm,加工出的最小外圆直径60μm。
日本金泽大学研制的一套微细车削系统,包括微细车床,控制单元,光学显微系统和监视器。机器长200mm,主轴功率0.5W,转速3000-15000rpm连续可调;径向跳动1μm以内;装夹工件直径0.3mm;XYZ轴的进给分辨率4nm;切削力通过一个具有三方向的力学传感器来监测,以提高基层的进给精度。
使用原子力显微镜上的金刚石探针尖作车刀,在直径0.3mm的黄铜丝毛坯上加工出直径10μm的外圆柱面,还加工了长120μm、螺距12.5μm的丝杆。
6)微细铣削
微细铣削技术主要是采用直径几十微米至一毫米的微型立铣刀,在常规尺寸的超精密机床上进行微细加工。
由於这些机床主要用於加工精度很高的非微小几何尺寸零件,通常需要昂贵的设计和制造工艺来达到期望精度,而对於微小零件,则缺少必要的柔性,且成本高,效率低。研发制造一种微型化的铣削加工设备迫在眉睫,它具有节省空间,节省能源,易於重组,成本低等优点。
目前国内对微细铣削加工的研究主要集中在加工表面质量,铣削力,铣刀的磨损和寿命,铣削状态和对微小零件的加工能力等方面。
哈尔滨工业大学精密工程研究所研制了国内首台微小型卧式铣床,尺寸为300mm×150mm×165mm,主轴最高转速为14000r/min,驱动系统分辨率为0.1μm。实现了在硬铝LY12上铣削尺寸为700μm×40μm和500μm×20μm的薄壁结构;在两块尺寸为12mm×8mm和8mm×5mm的有机玻璃材料上进行了人脸曲面的数控加工。
近日,哈工大又成功研制一台三轴微小型立式铣床。其尺寸为300mm×300mm×290mm,主轴最高转速16000r/min,最大径向跳动1μm,驱动系统重复定位精度0.25μm,速度范围1μm~250mm/s,全闭环控制,分辨率0.1μm。它使用0.2mm的微型立铣刀,可在70μm厚的小薄钢片上加工一个微型槽。
微细加工技术
7)微细磨削
微细磨削加工是将砂轮和砂带表面的磨粒近似看成刀刃,整个砂轮可以看作刀具。磨削加工微器件时需注意以下问题:磨粒在高速高压高温情况下会变钝;磨粒在高速情况下会脱落。
磨削加工专门用於硬而脆的材料,磨削加工中磨轮的切削刃保持锋利状态是加工中的关键,利用ELID(在线电解修整砂轮)技术在磨削加工过程中进行磨轮的微细修整是行之有效的方法。另外选用硬度高,耐高温,耐磨的磨粒材料会减缓磨粒变钝和脱落情况。
8)微细电火花加工
微细电火花加工原理和普通电火花加工原理基本相同,都是基於在绝缘的工作液中通过电极和工件之间的脉冲性火花放电时的电腐蚀现象来蚀除多余的材料,以达到对零件尺寸,形状及表面质量预定的加工要求。
微细电火花加工具有低应力,无毛刺,可加工高硬度材料等优点,在微细加工领域中被广泛的采用,已成为该领域一个重要的发展方向。
实现微细电火花加工的关键在於微小电极的制作,微小能量放电电源,工具电极的微量伺服进给,加工状态监测,系统控制及加工工艺方法等。
日本东京大学MasuzawaT等人在电火花反拷加工的基础上,利用线状电极替代反拷模块研制成功的线电极电火花磨削技术成功解决了微细电极的制作,使微细电火花加工进入实用性阶段,成为微细加工领域的热点。
综合比较以上八种微细加工技术,单从加工精度,表面粗糙度等方面来考虑,LIGA技术最好,其余光刻技术次之,微机械加工技术最差。各种加工方法由於其加工原理的局限性,都有其适合加工的微结构形状。比如,LIGA技术只能加工柱状的微结构;微细车削适合加工回转类零件;微细磨削适合加工沟槽类微结构等。
对於微结构的加工精度,并不是精度越高越好,还要考虑价格、周期等因素。总的来说,能满足要求且价格低周期短寿命长的加工方法才是最好的方法。几种微细加工技术比较见表2。
4、前景展望
随着微机电系统领域对微型制件需求量的不断增长和质量要求的不断提高,微型模具加工技术也在不断发展和完善,以满足微型制件的要求。
传统的微细加工方法加工三维微小模具型腔,虽然工艺简单实用,而且不需要太大的投资,但其加工型腔尺寸太大,精度太低;电化学等特种加工工艺虽然相对复杂,但在难切削材料,复杂型面和低刚度材料的模具型腔加工中,具有不可替代的优势;以LIGA技术和UV-LIGA技术为代表的光加工技术,工艺最为复杂,但其加工精度最高,可达到的深宽比最大,模具型腔尺寸最小,是最具发展前途的微型模具加工方法。
为了适应微制品零件更多的要求,进一步研究工作除了在微机械切削加工方面不断降低零件的加工尺寸,提高加工精度外,还应不断开发新的特种加工技术和光加工技术。