红外测温仪原理(转)

  zmwangping ·  2007-11-04 15:35  ·  115241 次点击
红外测温仪原理
1.简述
红外测温技术在生产过程中,在产品质量控制和监测,设备在线故障诊断和安全保护以及节约能源等方面发挥了着重要作用。近20年来,非接触红外测温仪在技术上得到迅速发展,性能不断完善,功能不断增强,品种不断增多,适用范围也不断扩大,市场占有率逐年增长。比起接触式测温方法,红外测温有着响应时间快、非接触、使用安全及使用寿命长等优点。非接触红外测温仪包括便携式、在线式和扫描式三大系列,并备有各种选件和计算机软件,每一系列中又有各种型号及规格。在不同规格的各种型号测温仪中,正确选择红外测温仪型号对用户来说是十分重要的。
红外检测技术是“九五”国家科技成果重点推广项目,红外检测是一种在线监测(不停电)式高科技检测技术,它集光电成像技术、计算机技术、图像处理技术于一身,通过接收物体发出的红外线(红外辐射),将其热像显示在荧光屏上,从而准确判断物体表面的温度分布情况,具有准确、实时、快速等优点。任何物体由于其自身分子的运动,不停地向外辐射红外热能,从而在物体表面形成一定的温度场,俗称“热像”。红外诊断技术正是通过吸收这种红外辐射能量,测出设备表面的温度及温度场的分布,从而判断设备发热情况。目前应用红外诊技术的测试设备比较多,如红外测温仪、红外热电视、红外热像仪等等。像红外热电视、红外热像仪等设备利用热成像技术将这种看不见的“热像”转变成可见光图像,使测试效果直观,灵敏度高,能检测出设备细微的热状态变化,准确反映设备内部、外部的发热情况,可靠性高,对发现设备隐患非常有效。
红外诊断技术对电气设备的早期故障缺陷及绝缘性能做出可靠的预测,使传统电气设备的预防性试验维修(预防试验是50年代引进前苏联的标准)提高到预知状态检修,这也是现代电力企业发展的方向。特别是现在大机组、超高电压的发展,对电力系统的可靠运行,关系到电网的稳定,提出了越来越高的要求。随着现代科学技术不断发展成熟与日益完善,利用红外状态监测和诊断技术具有远距离、不接触、不取样、不解体,又具有准确、快速、直观等特点,实时地在线监测和诊断电气设备大多数故障(几乎可以覆盖所有电气设备各种故障的检测)。它备受国内外电力行业的重视(国外70年代后期普遍应用的一种先进状态检修体制),并得到快速发展。红外检测技术的应用,对提高电气设备的可靠性与有效性,提高运行经济效益,降低维修成本都有很重要的意义。是目前在预知检修领域中普遍推广的一种很好手段,又能使维修水平和设备的健康水平上一个台阶。
采用红外成像检测技术可以对正在运行的设备进行非接触检测,拍摄其温度场的分布、测量任何部位的温度值,据此对各种外部及内部故障进行诊断,具有实时、遥测、直观和定量测温等优点,用来检测发电厂、变电所和输电线路的运转设备和带电设备非常方便、有效。
利用热像仪检测在线电气设备的方法是红外温度记录法。红外温度记录法是工业上用来无损探测,检测设备性能和掌握其运行状态的一项新技术。与传统的测温方式(如热电偶、不同熔点的蜡片等放置在被测物表面或体内)相比,热像仪可在一定距离内实时、定量、在线检测发热点的温度,通过扫描,还可以绘出设备在运行中的温度梯度热像图,而且灵敏度高,不受电磁场干扰,便于现场使用。它可以在-20℃~2000℃的宽量程内以0.05℃的高分辨率检测电气设备的热致故障,揭示出如导线接头或线夹发热,以及电气设备中的局部过热点等等。
带电设备的红外诊断技术是一门新兴的学科。它是利用带电设备的致热效应,采用专用设备获取从设备表面发出的红外辐射信息,进而判断设备状况和缺陷性质的一门综合技术。
2.红外基础理论
1672年,人们发现太阳光(白光)是由各种颜色的光复合而成,同时,牛顿做出了单色光在性质上比白色光更简单的著名结论。使用分光棱镜就把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等各色单色光。1800年,英国物理学家F.W.赫胥尔从热的观点来研究各种色光时,发现了红外线。他在研究各种色光的热量时,有意地把暗室的唯一的窗户用暗板堵住,并在板上开了一个矩形孔,孔内装一个分光棱镜。当太阳光通过棱镜时,便被分解为彩色光带,并用温度计去测量光带中不同颜色所含的热量。为了与环境温度进行比较,赫胥尔用在彩色光带附近放几支作为比较用的温度计来测定周围环境温度。试验中,他偶然发现一个奇怪的现象:放在光带红光外的一支温度计,比室内其他温度的批示数值高。经过反复试验,这个所谓热量最多的高温区,总是位于光带最边缘处红光的外面。于是他宣布太阳发出的辐射中除可见光线外,还有一种人眼看不见的“热线”,这种看不见的“热线”位于红色光外侧,叫做红外线。红外线是一种电磁波,具有与无线电波及可见光一样的本质,红外线的发现是人类对自然认识的一次飞跃,对研究、利用和发展红外技术领域开辟了一条全新的广阔道路。
红外线的波长在0.76~100μm之间,按波长的范围可分为近红外、中红外、远红外、极远红外四类,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。
温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。通过红外探测器将物体辐射的功率信号转换成电信号后,成像装置的输出信号就可以完全一一对应地模拟扫描物体表面温度的空间分布,经电子系统处理,传至显示屏上,得到与物体表面热分布相应的热像图。运用这一方法,便能实现对目标进行远距离热状态图像成像和测温并进行分析判断。
2.1热像仪原理
红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元上,在光学系统和红外探测器之间,有一个光机扫描机构(焦平面热像仪无此机构)对被测物体的红外热像进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热像图。这种热像图与物体表面的热分布场相对应;实质上是被测目标物体各部分红外辐射的热像分布图由于信号非常弱,与可见光图像相比,缺少层次和立体感,因此,在实际动作过程中为更有效地判断被测目标的红外热分布场,常采用一些辅助措施来增加仪器的实用功能,如图像亮度、对比度的控制,实标校正,伪色彩描绘等技术
2.2热像仪的发展
1800年,英国物理学家F.W.赫胥尔发现了红外线,从此开辟了人类应用红外技术的广阔道路。在第二次世界大战中,德国人用红外变像管作为光电转换器件,研制出了主动式夜视仪和红外通信设备,为红外技术的发展奠定了基础。
二次世界大战后,首先由美国德克萨兰仪器公司经过近一年的探索,开发研制的第一代用于军事领域的红外成像装置,称之为红外寻视系统(FLIR),它是利用光学机械系统对被测目标的红外辐射扫描。由光子探测器接收两维红外辐射迹象,经光电转换及一系列仪器处理,形成视频图像信号。这种系统、原始的形式是一种非实时的自动温度分布记录仪,后来随着五十年代锑化铟和锗掺汞光子探测器的发展,才开始出现高速扫描及实时显示目标热图像的系统。
六十年代早期,瑞典AGA公司研制成功第二代红外成像装置,它是在红外寻视系统的基础上以增加了测温的功能,称之为红外热像仪。
开始由于保密的原因,在发达的国家中也仅限于军用,投入应用的热成像装置可的黑夜或浓厚幕云雾中探测对方的目标,探测伪装的目标和高速运动的目标。由于有国家经费的支撑,投入的研制开发费用很大,仪器的成本也很高。以后考虑到在工业生产发展中的实用性,结合工业红外探测的特点,采取压缩仪器造价。降低生产成本并根据民用的要求,通过减小扫描速度来提高图像分辨率等措施逐渐发展到民用领域。
六十年代中期,AGA公司研制出第一套工业用的实时成像系统(THV),该系统由液氮致冷,110V电源电压供电,重约35公斤,因此使用中便携性很差,经过对仪器的几代改进,1986年研制的红外热像仪已无需液氮或高压气,而以热电方式致冷,可用电池供电;1988年推出的全功能热像仪,将温度的测量、修改、分析、图像采集、存储合于一体,重量小于7公斤,仪器的功能、精度和可靠性都得到了显著的提高。
九十年代中期,美国FSI公司首先研制成功由军用技术(FPA)转民用并商品化的新一红外热像仪(CCD)属焦平面阵列式结构的一种凝成像装置,技术功能更加先进,现场测温时只需对准目标摄取图像,并将上述信息存储到机内的PC卡上,即完成全部操作,各种参数的设定可回到室内用软件进行修改和分析数据,最后直接得出检测报告,由于技术的改进和结构的改变,取代了复杂的机械扫描,仪器重量已小于二公斤,使用中如同手持摄像机一样,单手即可方便地操作。
如今,红外热成像系统已经在电力、消防、石化以及医疗等领域得到了广泛的应用。红外热像仪在世界经济的发展中正发挥着举足轻重的作用。
2.3热像仪分类
红外热像仪一般分光机扫描成像系统和非扫描成像系统。光机扫描成像系统采用单元或多元(元数有8、10、16、23、48、55、60、120、180甚至更多)光电导或光伏红外探测器,用单元探测器时速度慢,主要是帧幅响应的时间不够快,多元阵列探测器可做成高速实时热像仪。非扫描成像的热像仪,如近几年推出的阵列式凝视成像的焦平面热像仪,属新一代的热成像装置,在性能上大大优于光机扫描式热像仪,有逐步取代光机扫描式热像仪的趋势。其关键技术是探测器由单片集成电路组成,被测目标的整个视野都聚焦在上面,并且图像更加清晰,使用更加方便,仪器非常小巧轻便,同时具有自动调焦图像冻结,连续放大,点温、线温、等温和语音注释图像等功能,仪器采用PC卡,存储容量可高达500幅图像。
红外热电视是红外热像仪的一种。红外热电视是通过热释电摄像管(PEV)接受被测目标物体的表面红外辐射,并把目标内热辐射分布的不可见热图像转变成视频信号,因此,热释电摄像管是红外热电视的光键器件,它是一种实时成像,宽谱成像(对3~5μm及8~14μm有较好的频率响应)具有中等分辨率的热成像器件,主要由透镜、靶面和电子枪三部分组成。其技术功能是将被测目标的红外辐射线通过透镜聚焦成像到热释电摄像管,采用常温热电视探测器和电子束扫描及靶面成像技术来实现的。热像仪的主要参数有:
2.3.1工作波段;工作波段是指红外热像仪中所选择的红外探测器的响应波长区域,一般是3~5μm或8~12μm。
2.3.2探测器类型;探测器类型是指使用的一种红外器件。是采用单元或多元(元数8、10、16、23、48、55、60、120、180等)光电导或光伏红外探测器,其采用的元素有硫化铅(PbS)、硒化铅(PnSe)、碲化铟(InSb)、碲镉汞(HgCdTe)、碲锡铅(PbSnTe)、锗掺杂(Ge:X)和硅掺杂(Si:X)等。
2.3.3扫描制式;一般为我国标准电视制式,PAL制式。
2.3.4显示方式;指屏幕显示是黑白显示还是伪彩显示。
2.3.5温度测定范围;指测定温度的最低限与最高限的温度值的范围。
2.3.6测温准确度;指红外热像仪测温的最大误差与仪器量程之比的百分数。
2.3.7最大工作时间;红外热像仪允许连续的工作时间。
3.红外测温仪
3.1红外测温仪的种类
红外测温仪器主要有3种类型:红外热像仪、红外热电视、红外测温仪(点温仪)。60年代我国研制成功第一台红外测温仪,1990年以后又陆续生产小目标、远距离、适合电业生产特点的测温仪器,如西光IRT-1200D型、HCW-Ⅲ型、HCW-Ⅴ型;YHCW-9400型;WHD4015型(双瞄准,目标D40mm,可达15m)、WFHX330型(光学瞄准,目标D50mm,可达30m)。美国生产的PM-20、30、40、50、HAS-201测温仪;瑞典AGA公司TPT20、30、40、50等也有较广泛的应用。DL-500E可以应用于110~500kV变电设备上,图像清晰,温度准确。红外热像仪,主要有日本TVS-2000、TVS-100,美国PM-250,瑞典AGA-THV510、550、570。近期,国产红外热像仪在昆明研制成功,实现了国产化。
3.2红外测温仪工作原理
了解红外测温仪的工作原理、技术指标、环境工作条件及操作和维修等是用户正确地选择和使用红外测温仪的基础。红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇集其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件以及位置决定。红外能量聚焦在光电探测仪上并转变为相应的电信号。该信号经过放大器和信号处理电路按照仪器内部的算法和目标发射率校正后转变为被测目标的温度值。除此之外,还应考虑目标和测温仪所在的环境条件,如温度、气氛、污染和干扰等因素对性能指标的影响及修正方法。
一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射能量的大小及其按波长的分布——与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。
黑体辐射定律:黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为1。应该指出,自然界中并不存在真正的黑体,但是为了弄清和获得红外辐射分布规律,在理论研究中必须选择合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射的定律,即以波长表示的黑体光谱辐射度,这是一切红外辐射理论的出发点,故称黑体辐射定律。
物体发射率对辐射测温的影响:自然界中存在的实际物体,几乎都不是黑体。所有实际物体的辐射量除依赖于辐射波长及物体的温度之外,还与构成物体的材料种类、制备方法、热过程以及表面状态和环境条件等因素有关。因此,为使黑体辐射定律适用于所有实际物体,必须引入一个与材料性质及表面状态有关的比例系数,即发射率。该系数表示实际物体的热辐射与黑体辐射的接近程度,其值在零和小于1的数值之间。根据辐射定律,只要知道了材料的发射率,就知道了任何物体的红外辐射特性。
影响发射率的主要因素在:材料种类、表面粗糙度、理化结构和材料厚度等。
当用红外辐射测温仪测量目标的温度时首先要测量出目标在其波段范围内的红外辐射量,然后由测温仪计算出被测目标的温度。单色测温仪与波段内的辐射量成比例;双色测温仪与两个波段的辐射量之比成比例。
红外系统:红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内疗的算法和目标发射率校正后转变为被测目标的温度值。
3.3红外测温仪性能
红外测温仪是通过接收目标物体发射、反射和传导的能量来测量其表面温度。测温仪内的探测元件将采集的能量信息输送到微处理器中进行处理,然后转换成温度读数显示。在带激光瞄准器的型号中,激光瞄准器只做瞄准使用。其性能说明如表1。
测温范围-32℃--400℃显示分辩率0.1℃(<199.1℃时)
精度23℃时±1%工作环境温度范围0--50℃
重复性23℃时±1%相对湿度30℃时10—95%
响应时间500ms电源9V
响应光谱7-18micron尺寸137×41×196mm
最大值显示Have重量270g
发射率0.95Preset防水根据消防部队要求特殊制作
表1红外测温仪性能
为了获得精确的温度读数,测温仪与测试目标之间的距离必须在合适的范围之内,所谓“光点尺寸”(spotsize)就是测温仪测量点的面积。您距离目标越远,光点尺寸就越大。右图所示为距离与光点尺寸的比率,或称D:S。在激光瞄准器型测温仪上,激光点在目标中心的上方,有12mm(0.47英寸)的偏置距离。
测量距离与光点尺寸
在定测量距离时,应确保目标直径等于或大于受测的光点尺寸。右图所标示的“1号物体”(object1)与测量仪之间的距离正,因为目标比被测光点尺寸略大一些。而“2号物体”距离太远,因为目标小于受测的光点尺寸,即测温仪同在测量背景物体,从而降低了读数的精确性。
4.红外测温仪正确选择
选择红外测温仪可分为3个方面:
(1)性能指标方面,如温度范围、光斑尺寸、工作波长、测量精度、窗口、显示和输出、响应时间、保护附件等;
(2)环境和工作条件方面,如环境温度、窗口、显示和输出、保护附件等;
(3)其他选择方面,如使用方便、维修和校准性能以及价格等,也对测温仪的选择产生一定的影响。
随着技术和不断发展,红外测温仪最佳设计和新进展为用户提供了各种功能和多用途的仪器,扩大了选择余地。其他选择方面,如使用方便、维修和校准性能以及价格等。在选择测温仪型号时应首先确定测量要求,如被测目标温度,被测目标大小,测量距离,被测目标材料,目标所处环境,响应速度,测量精度,用便携式还是在线式等等;在现有各种型号的测温仪对比中,选出能够满足上述要求的仪器型号;在诸多能够满足上述要求的型号中选择出在性能、功能和价格方面的最佳搭配。
4.1确定测温范围
确定测温范围:测温范围是测温仪最重要的一个性能指标。如Raytek(雷泰)产品覆盖范围为-50℃-+3000℃,但这不能由一种型号的红外测温仪来完成。每种型号的测温仪都有自己特定的测温范围。因此,用户的被测温度范围一定要考虑准确、周全,既不要过窄,也不要过宽。根据黑体辐射定律,在光谱的短波段由温度引起的辐射能量的变化将超过由发射率误差所引起的辐射能量的变化,因此,测温时应尽量选用短波较好。一般来说,测温范围越窄,监控温度的输出信号分辨率越高,精度可靠性容易解决。测温范围过宽,会降低测温精度。例如,如果被测目标温度为1000摄氏度,首先确定在线式还是便携式,如果是便携式。满足这一温度的型号很多,如3iLR3,3i2M,3i1M。如果测量精度是主要的,最好选用2M或1M型号的,因为如果选用3iLR型,其测温范围很宽,则高温测量性能便差一些;如果用户除测量1000摄氏度的目标外,还要照顾低温目标,那只好选择3iLR3。
4.2确定目标尺寸
红外测温仪根据原理可分为单色测温仪和双色测温仪(辐射比色测温仪)。对于单色测温仪,在进行测温时,被测目标面积应充满测温仪视场。建议被测目标尺寸超过视场大小的50%为好。如果目标尺寸小于视场,背景辐射能量就会进入测温仪的视声符支干扰测温读数,造成误差。相反,如果目标大于测温仪的视场,测温仪就不会受到测量区域外面的背景影响。对于比色测温仪,其温度是由两个独立的波长带内辐射能量的比值来确定的。因此当被测目标很小,不充满视场,测量通路上存在烟雾、尘埃、阻挡,对辐射能量有衰减时,都不对测量结果产生重大影响。对于细小而又处于运动或震动之中的目标,比色测温仪是最佳选择。这是由于光线直径小,有柔性,可以在弯曲、阻挡和折叠的通道上传输光辐射能量。
对于Raytek(雷泰)双色测温仪,其温度是由两个独立的波长带内辐射能量的比值来确定的。因此当被测目标很小,没有充满现场,测量通路上存在烟雾、尘埃、阻挡对辐射能量有衰减时,都不会对测量结果产生影响。甚至在能量衰减了95%的情况下,仍能保证要求的测温精度。对于目标细小,又处于运动或振动之中的目标;有时在视场内运动,或可能部分移出视场的目标,在此条件下,使用双色测温仪是最佳选择。如果测温仪和目标之间不可能直接瞄准,测量通道弯曲、狭小、受阻等情况下,双色光纤测温仪是最佳选择。这是由于其直径小,有柔性,可以在弯曲、阻挡和折叠的通道上传输光辐射能量,因此可以测量难以接近、条件恶劣或靠近电磁场的目标。
4.3确定距离系数(光学分辨率)
距离系数由D:S之比确定,即测温仪探头到目标之间的距离D与被测目标直径之比。如果测温仪由于环境条件限制必须安装在远离目标之处,而又要测量小的目标,就应选择高光学分辨率的测温仪。光学分辨率越高,即增大D:S比值,测温仪的成本也越高。Raytek红外测温仪D:S的范围从2:1(低距离系数)到高于300:1(高距离系数)。如果测温仪远离目标,而目标又小,就应选择高距离系数的测温仪。对于固定焦距的测温仪,在光学系统焦点处为光斑最小位置,近于和远于焦点位置光斑都会增大。存在两个距离系数。因此,为了能在接近和远离焦点的距离上准确测温,被测目标尺寸应大于焦点处光斑尺寸,变焦测温仪有一个最小焦点位置,可根据到目标的距离进行调节。增大D:S,接收的能量就减少,如不增大接收口径,距离系数D:S很难做大,这就要增加仪器成本。
4.4确定波长范围
目标材料的发射率和表面特性决定测温仪的光谱相应波长对于高反射率合金材料,有低的或变化的发射率。在高温区,测量金属材料的最佳波长是近红外,可选用0.8~1.0μm。其他温区可选用1.6μm,2.2μm和3.9μm。由于有些材料在一定波长上是透明的,红外能量会穿透这些材料,对这种材料应选择特殊的波长。如测量玻璃内部温度选用1.0μm,2.2μm和3.9μm(被测玻璃要很厚,否则会透过)波长;测玻璃表面温度选用5.0μm;测低温区选用8~14μm为宜。如测量聚乙烯塑料薄膜选用3.43μm,聚酯类选用4.3μm或7.9μm,厚度超过0.4mm的选用8-14μm。如测火焰中的CO用窄带4.64μm,测火焰中的NO2用4.47μm。
4.5确定响应时间
响应时间表示红外测温仪对被测温度变化的反应速度,定义为到达最后读数的95%能量所需要时间,它与光电探测器、信号处理电路及显示系统的时间常数有关。Raytek(雷泰)新型红外测温仪响应时间可达1ms。这要比接触式测温方法快得多。如果目标的运动速度很快或测量快速加热的目标时,要选用快速响应红外测温仪,否则达不到足够的信号响应,会降低测量精度。然而,并不是所有应用都要求快速响应的红外测温仪。对于静止的或目标热过程存在热惯性时,测温仪的响应时间就可以放宽要求了。因此,红外测温仪响应时间的选择要和被测目标的情况相适应。确定响应时间,主要根据目标的运动速度和目标的温度变化速度。对于静止的目标或目标参在热惯性,或现有控制设备的速度受到限制,测温仪的响应时间就可以放宽要求了。
4.6信号处理功能
鉴于离散过程(如零件生产)和连续过程不同,所以要求红外测温仪具有多信号处理功能(如峰值保持、谷值保持、平均值)可供选用,如测温传送带上的瓶子时,就要用峰值保持,其温度的输出信号传送至控制器内。否则测温仪读出瓶子之间的较低的温度值。若用峰值保持,设置测温仪响应时间稍长于瓶子之间的时间间隔,这样至少有一个瓶子总是处于测量之中。
4.7环境条件
考虑测温仪所处的环境条件对测量结果有很大影响,应予考虑并适当解决,否则会影响测温精度甚至引起损坏。当环境温度高,存在灰尘、烟雾和蒸汽的条件下,可选用厂商提供的保护套、水冷却、空气冷却系统、空气吹扫器等附件。这些附件可有效地解决环境影响并保护测温仪,实现准确测温。在确定附件时,应尽可能要求标准化服务,以降低安装成本。当在噪声、电磁场、震动或难以接近环境条件下,或其他恶劣条件下,烟雾、灰尘或其他颗粒降低测量能量信信号时,光纤双色测温仪是最佳选择。比色测温仪是最佳选择。在噪声、电磁场、震动和难以接近的环境条件下,或其他恶劣条件时,宜选择光线比色测温仪。
在密封的或危险的材料应用中(如容器或真空箱),测温仪通过窗口进行观测。材料必须有足够的强度并能通过所用测温仪的工作波长范围。还要确定操作工是否也需要通过窗口进行观察,因此要选择合适的安装位置和窗口材料,避免相互影响。在低温测量应用中,通常用Ge或Si材料作为窗口,不透可见光,人眼不能通过窗口观察目标。如操作员需要通过窗口目标,应采用既透红外辐射又透过可见光的光学材料,如应采用既透红外辐射又透过可见光的光学材料,如ZnSe或BaF2等作为窗口材料。
当测温仪工作环境中存在易燃气体时,可选用本征安全型红外测温仪,从而在一定浓度的易燃气体环境中进行安全测量和监视。
在环境条件恶劣复杂的情况下,可以选择测温头和显示器分开的系统,以便于安装和配置。可选择与现行控制设备相匹配的信号输出形式。
4.8红外辐射测温仪的标定
红外测温仪必须经过标定才能使它正确地显示出被测目标的温度。如果所用的测温仪在使用中出现测温超差,则需退回厂家或维修中心重新标定。

14 条回复

dpeng911  2007-12-23 23:46
资料非常齐全,谢谢,这段时间正在搞这个东西呢
zgb  2007-11-28 15:29
谢谢!刚好厂里有这个设备,可以好好研究一下。
yuxianfei  2007-11-20 09:52
晕,下载不了
zmwangping  2007-11-05 14:35
红外测温仪技术基础
1800年,英国天文学家F.W.赫歇耳发现了红外线。红外技术在军事上的实际应用始于第二次世界大战期间。当时,德国研制和使用了一些红外技术装备,其中有红外通信设备和红外夜视仪,它们都属于主动式红外系统。战后,由于红外光子探测器和透红外光学材料的迅速发展,红外技术的应用引起军事部门的重视。此后,红外技术的发展方向集中在被动式系统上。50年代,红外点源制导系统应用于战术导弹上。60年代,红外技术的军事应用已相当广泛,如已应用于制导、火控、瞄准、侦察和监视等。60年代中期,出现了光机扫描的红外成像技术。70年代,红外成像技术获得迅速发展,热成像系统和电荷耦合器件的应用是这一时期的重要成果。80年代,红外技术进入研制镶嵌焦面阵列(CCD阵列)系统的新时期。
基本概念
自然界中, 一切温度高于绝对零度摄氏-273.16 的物体都不断地辐射着红外线, 这种现象称为热辐射。红外线是一种人眼不可见的光波,它是由物质内部的分子、原子的运动所产生的电磁辐射,是电磁频谱的一部分,其波段介于可见光和微波波段之间(0.76~1000微米)。通常按波长把红外光谱分成4个波段:近红外(0.76~3微米)、中红外(3~6微米)、中远红外(6~20微米)和远红外(20~1000微米)。
一切物体都有其自身的红外辐射特性。为研究各种不同物体的红外辐射,人们用理想辐射体──绝对黑体(简称黑体)作基准。能吸收全部入射的辐射而没有反射的物体称为黑体。良好的吸收体必然也是良好的辐射体,因此黑体的辐射效率最高,其比辐射率定为1。任何实际物体的辐射发射量与同一温度下黑体的辐射发射量之比,称为该物体的比辐射率,其值总是小于1。物体的比辐射率,与物体的材料种类、表面特性、温度、波长等因素有关。黑体的辐射特性可用普朗克定律描述,该定律给出了黑体辐射作为温度函数的光谱分布。对某一温度,辐射量最大的波长与其温度的乘积为常数,这个关系称维恩定律(适用于在温度较低,波长较短的范围内)。对所有波长积分所得到的总辐射量与温度的四次方成正比,这个关系称为斯蒂芬-玻尔兹曼定律。
物体发出的辐射,大都要通过大气才能到达红外光学系统。由于大气中二氧化碳、水汽等气体对红外辐射会产生选择性吸收和其他微粒的散射,使红外辐射发生不同程度的衰减。人们把某些衰减较小的波段,称为大气窗口。在0.76~20微米波段内有3个大气窗口:1~2.7微米,3~5微米,8~14微米。目前红外系统所使用的波段,大都限于上述大气窗口之中(大气窗口还与大气成份、温度和相对湿度等因素有关)。由于红外系统所探测的目标处于各自的特定背景之中,从而使探测过程复杂化。因此,在设计红外系统时,不但要考虑红外辐射在大气中的传输效应,还要采用抑制背景技术,以提高红外系统探测和识别目标的能力。
分类
红外系统按工作原理,可分为主动式和被动式两类。主动式系统需自带红外光源照射目标;被动式系统则直接探测目标的红外辐射。后者是占主导地位的军用红外系统,如热成像系统、搜索跟踪系统、红外辐射计和警戒系统等。按信息提供方式,可分为成像和点源系统。按工作方式,还可分为扫描和非扫描系统,扫描系统又分为光机扫描和电子扫描系统。
组成和工作原理
红外系统一般由红外光学系统、红外探测器、信号放大和处理、显示记录系统等组成。其工作原理如图所示:

红外光学系统把目标的红外辐射集聚到红外探测器上,并以光谱和空间滤波方式抑制背景干扰。红外探测器将集聚的辐射能转换成电信号。微弱的电信号经放大和处理后,输送给控制和跟踪执行机构或送往显示记录装置。红外光学系统的结构,一般可分为反射式、折射式和折反射式三种,后两种结构需采用具有良好红外光学性能的材料。
红外探测器一般有光子探测器、热释电探测器、热敏探测器、电荷耦合器件和红外电真空器件等。有些探测器要在低温下工作,需采用致冷器。致冷器有辐射致冷器、热电致冷器和冷冻剂致冷器等。采用何种致冷器,需视系统结构、所用探测器类型和使用环境而定。置于红外探测器前的光学调制器,将目标辐射进行调制编码,以便从背景中提取目标信号或目标的空间位置信息。前置放大器将探测器输出的微弱信号进行初级放大,并给探测器提供合适的偏置条件。它的噪声指数很低,从而使探测器的噪声有可能成为系统的极限噪声。信号处理系统把前置放大器输出的信号进一步放大和处理,从信号中提取控制装置或显示记录设备所需的信息。一般非成像系统视目标为点辐射源,相应的信号处理、显示记录系统比较简单。红外成像系统,通常需将目标红外辐射转换成黑白照片和假彩色照片或电视图像。这种图像不象可见光照相机所得的图像那样直观,它反映的是目标的辐射温度分布
红外测温仪测量原理、标准、技术基础
用红外测温仪进行非接触温度测量有许多的优点,它的运用范围从很小或难以接触到的物体至腐蚀性的化学物和敏感的表面物。本文将讨论此优点,给予正确选择红外测温仪的决定性等加以说明运用范畴。
由于原子和分子的运动,每一物体都会辐射电磁波,对非接触温度测量最重要的波长或光谱范围是在0.2至2.0µm。这一范围内的自然射线,人们称作为热辐射或红外线。
由被测物辐射的红外线所进行温度测量的测试仪器,按照德国工业标准DIN16160被称为辐射温度计,辐射高温计或红外测温仪。这些名称也适用于那些由被测体辐射的可见彩色射线所进行温度测量的仪器,及由相对频谱的辐射密度导出温度的仪器。
一、红外测温仪温度测量的优点
通过接收被测体辐射的红外线而进行的非接触温度测量有很多的优点。这样那些难以接触到或运动着的物体就可毫无问题的进行温度测量,如传热性能差的或很小的热容量材料。红外测温仪很短的响应时间能快速地实现有效调节回路。高温计不拥有会磨损的部件,因而就不存在如使用温度计所存在的连续费用。特别是在很小的被测物体,如用接触测量,由于物体的导热性将产生很大的测量误差。这里可毫无疑问的使用高温计,及用于腐蚀性的化学物或敏感的表层,如在油漆,纸张和塑料轨上。通过远距离的摇控测量,可远离危险区域,使操作人员无危险性。
二、红外测温仪的原理构造
把从被测物接收的红外线,由透镜经过滤波器聚焦在检波器上。检波器通过被测物辐射密度的积分,产生一个与温度成比例的电流或电压信号,在此后相连接的电器部件中,把此温度信号线性化,发射率区域的修正,及转换成一个标准的输出信号。
原理上有便携式高温计和固定式高温计两种,因此,在选择合适的红外测温仪用于不同的测量点时,以下的特征将是主要的:
1、瞄准器
瞄准器有此作用,高温计所指的测量块或测量点可以看见,大面积的被测物可以经常不要瞄准器。在小的被测物和较远的测量距离时,瞄准器以透光镜形式带有仪表板刻度或激光指向点是值得推荐的。
2、透镜
透镜确定高温计的被测点,对大面积的物体来说,一般带有固定焦距的高温计足够可以。但在测量距离远离聚焦点时,测量点边缘的图像将不清楚。为此,采用变焦镜更好,在所给予的变焦范围内,高温计可调整测量距离,最新的高温计带有变焦的可替换镜头,近透镜和远透镜可不需校准复检进行更换。
3、传感器,即光谱接收器
温度是与波长成反比的。在低物体温度时,对长波光谱区域敏感的传感器(热膜传感器或热电传感器)是很合适的,在高温度时,将用对短波敏感受的,由锗,硅,铟-镓等组成的光电传感器。
在选择光谱敏感性时,还要考虑对氢气和二氧化碳的吸收光谱带。在一定的波长范围内,即所谓的“大气层窗”,H2和CO2对红外线几乎是穿透的,因此高温计的光变敏感性必须在此范围内,以便排除大气层浓度变化带来的影响,在测量薄膜或玻璃时,还要考虑到这些材料在一定波长内不易穿透的。为了避免背景光线引起的测量误差,运用相宜的,只接收表面温度的传感器,金属有此物理特性,发射率随着波长的减小而增大,经验而谈,测量金属的温度,一般选择最短的测量波长。
三、发展趋向
如许多的传感技术领域,高温计的发展趋向也走向小型的,精巧的造型,圆型的,带有中央螺纹的外壳是最理想地安装于机器和设备的造型,这一发展趋向的实现,是通过不断的电器部件微型化,及高度的微积分使得愈来愈小的,愈来愈精致的电器部件浓缩于愈来愈小的空间。与过去模拟技术相比,通过微控件的应用,提高了检波器信号线性化高度的精密性,因而也提高了仪器的精确度。
市场供应需要快速的,价廉的测量值接收,它能直接输出一个与温度成比例的,线性的电流/电压信号,测量值得处理,如平整功能,特殊值储存,或边界接触将放置在智能显示器,调节器或SPS(程序控制器)上,通过电缆外接的发射率调整,可以危险区外,即便机器开动着,也可修正,这时也可由SPS来调整。
通过身控件的运用,现在可毫无问题地实现数据总线接口,但网络连接至今还未实现,对信号的继续处理,还延用过去的标准模拟信号。在检波器段,用了新的材料作光电传感器,证实了敏感性的提高,乃至分辨率的提高。在热膜传感器中,新的传感器只需要更短的调整时间,带瞄准器高温计的最新发展,是变焦的更换镜头,不用校准复检即可替换,对不同的测量位置用同一基础仪器,节约了仓库管理费用。
四、选择高温计的主要标准
高温计的运用主要由测量范围所决定,不论是测量电压,还是测量区域的始值,都应与测量工作的要求相符,选择愈大的测量电压,分辨率就俞小,因而准确性就差,特别在低测量温度始值时,选用大的测量电压,准确性将成倍的减小,因而值得推荐的是,选择可能的最小测量电压。
测量区域的始值时决定了光谱的敏感性,以至也决定了检波器的型号,测量的误差由于发射率的错误调整,在短波的传感器要明显地比长波传感器小,所以在热膜传感器(8~14µm)800℃时,由于发射率的错误调整所引起的测量误差,将五倍的大于锗-光电二级管的传感器(1,1~1,6µm)。锗-光电二级管的传感器容许的测量范围从大约250℃起。
举例说明,在陶瓷工业或发电厂的燃烧过程,测量范围通常在0~1300℃。为了避免大的误差产生,应该选用短波检波器的高温计。尽管它的高测温值从250~1300℃
另一个选择合适高温计的标准是间距比例。这里指的是测量距离和测量点直径的比例关系,如果被测物小,测量距离大,或所谓的“热点”在大面积上,那就需要大的间距比例。相反如果大面积的测量点,由于传感器对测量点的是间值有一个稳定的输出信号,固选用小的间距比例。
另外要确定的是,高温计是否带瞄准器装置,因为瞄准器装置将提高50%的成本,这里关键是一个价钱的部下,在大面积的测量物体时,通常可以不要组装进瞄准器,代之的是一个外接的瞄准器,它将用于高温计在安装时的矫正,这样就有价格上优势,众多的测量处只需一个瞄准器。
对小的测量物体或者远离的测量距离就需随时能瞄准的可能。在一个带仪表板刻度的透光镜,人们可看清测量点的实际大小,价格便宜的是用激光指向点,但它只能逐点进行测量,在测量闭式炉等相似类时,需要一个透视窗。
由此需要决定,高温计是否需要,及南非要哪些功能?如平整功能,特殊值储存,边界接触或电脑接口,为了高温计的相适于测量物表面,发射率调整的可能有性是必须的,其他的功能可以价廉地通过连接记录仪,调节器或程控机来实现。
此外,对某些运用来说,外型结构也是决定因素,在较高的环境温度下,高温计以镜头只带光学部分,由光导电缆连接电器部分,放置于远离高温地带,优点在于,可以节约冷却装置。
最后是高温计型号,是光谱高温计,还是比率(双色)高温计,光谱高温计接收一个波长的辐射密度,与此不同的是比率高温计带双重传感器二个单一的传感器,它将测量二个不同波长的辐射密度,这二个检波器信号的比便再现温度的比例关系,由于中间介质如蒸汽,灰尘在高温计的辐射内,或发射率的变动,至一定的范围内,这二条线路不显示信号变动。但单色光谱高温计将马上显示此变动,故此率高温计优先用行管式转炉或在金属制造和加工业中,辐射干扰较严重的场合。
五、运用举例
不同高温计的运用可能性是极其广泛的,近几年内的价格大幅度下降开辟了愈来愈多的运用领域,特别在低温区域或用于替换一般的传统温度计,下面的实例是关于使用及解答案的概况。
1、混凝土加工业
在混凝土加工时,温度是对凝结时间和由此而定的坚固性起关键作用,特别是安全混凝土,得达到一定的加工温度,接触探针将机械地由于水泥的腐蚀作用而很快损坏。而高温计即可直接接受搅拌滚筒的温度,也可是混凝土出口时的温度,因为ISO9000的质量检验的需要,温度必须与其它的生产参数一起以文件形式被记录下来,上于脏乱的工业环境,需要十分坚固的,如防尘,防水的测量镜头,为了防护高温计,采用相宜的附件如轴向间隙喷嘴,光镜保护盖及绝缘管。
2、造纸业
在造纸业精制中,纸轨将在一个加热的金属轧辊和涂有塑料层的精压轧辊之间运行,如果纸的宽度小于轧辊宽时,精压轧辊的边缘的温度将大大高于中间的,这中间和边缘的温度之差不能超出已定的绝对温度,否则塑料涂层将损伤。
为了测量温度,可以每一机架装备三个固定式高温计,也可用一高温计在瞄准器装置上沿着轧辊长度移动,由于局部的强烈蒸汽需要一个防水的高温计及带轴向间隙喷嘴,用于视窗的自由吹气,因为温度的处理需要SPS机,所以一般的仪器带有发射率的修正就可。
3、陶瓷工业
为了陶瓷材料的生产,在燃烧过程中需要知道温度的变化过程,以便达到同样质量的产品,避废品产生,同时为了节约能源,必需把温度控制在最小值内,至今以来都是用温度计测量温度,它得到的是室温,对此高温计就有优势,它能直接测量物体表面的温度,而且是在很短的时间内,这样就能准确地测量并保持燃烧温度。
4、冶金工业
在冶金工业行业中,红外温度测量更是应用于各个领域。例如各种炉体的内壁缺陷诊断、冷却壁损坏的诊断、工艺参数的控制等等。通过红外温度测量可以准确地监控设备的状况,提高设备使用寿命,节约能源,降低成本,提高产品质量
由此可知,传统的温度计将是淘汰的时代产品,它将随时间而消失或损坏,以致需要不断的更换,而高温计不具有磨损件,因而理论上,它的使用寿命是无限的,因此它的较贵些的投资成本在短期内即可赢回。高温计即可在侧边,或在顶上安装,避免倾斜的对准,以免高温计只被抓信边缘,轴向间隙喷嘴应避免放在高温计的镜头上,在较高环境温度时,需要一个附加的冷却装置。
我公司所代理的德国凯乐(KELLER HCW)公司是德国一家具有百年历史的传统企业和通过ISO9001认证企业,其产品的高精度和可靠性在红外温度计量仪器生产领域处于世界领先地位,其产品为许多国际著名企业(如西门子公司)所使用。该公司所生产的红外温度测量仪具有如下优点:
1. 非接触,安全:可测带电、旋转、腐蚀性强的物体
2. 体积小,特别是PM系列
3. 精度高,性能稳定
4. 寿命长
5. 测量范围广 -30─3500℃(分段)
6. 抗干扰能力强
7. 种类多,选择范围广:根据测量温度范围、距离系数、波长的不同可有多种选择
8. 配件齐全:包括各种防护配件,接口,显示仪表
9. 响应时间短:最快2ms
10. 一次性投入,不象热电偶测温需要长期的耗材投入

 回复

你需要  登录  或  注册  后参与讨论!